Как подключить электродвигатель 380в на 220в

Проверка и сборка

Если всё работает нормально, то механизм разбирают снова для покрытия обмоток статора лаком. Статор помещают в лак для пропитки обмоток и заполнения пустот. Затем его поднимают, давая стечь лаку, и сушат на открытом воздухе или в специальной сушилке. Для ускорения сушки применяют лампу накаливания мощностью 0,5-1 кВт, вставленную в статор и включённую в сеть.

После просушки двигателя производят его полную сборку, ещё раз проверяют сопротивление изоляции. Делают проверку двигателя на холостом ходу. Лучше для этой цели использовать понижающий трансформатор и автоматический выключатель (желательно УЗО). Только после проверки можно использовать двигатель на полном напряжении.

Правильно провести перемотку помогут следующие советы специалистов:

Однофазный асинхронный электродвигатель с короткозамкнутым ротором должен иметь пусковую и рабочую обмотки. Их расчет производят так же, как расчет обмоток трехфазных асинхронных двигателей.

Меньшие значения коэффициента берутся для двигателей большей мощности (около 1 кВт) с кратковременным и повторно-кратковременным режимами работы.

Пусковая обмотка укладывается в 1/3 пазов.

Наиболее распространены два варианта пусковых обмоток: с бифилярными катушками и с дополнительным внешним сопротивлением.

Обмотка с бифилярными катушками наматывается из двух параллельных проводников с разным направлением тока (индуктивное сопротивление рассеяния бифилярных обмоток близко к нулю).

Подключение трехфазного асинхронного двигателя на 220в.

Бытовые электросети однофазные 220 вольт. Возникает вопрос, как подключить трехфазный двигатель к однофазной электросети? Да просто, небольшой электромотор, примерно до 1кВт – можно подключить, и даже имеется несколько схем. Не станем вдаваться в скучные расчеты, а рассмотрим рисунки и обсудим принцип работы.

На рисунках мы видим, как включить электромотор в сеть 220в. Фазу подсоединяем к U1 (С1) фазу, к V1 (C2) – ноль, а на свободную клемму W1 (C3) вешаем конденсатор. Для этих целей подойдут МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60 на 450 вольт. Расчет производится по формулам: для «Υ» C =   , для «Δ» — C = , где С – емкость конденсатора, I – сила тока в амперах и U – напряжение в вольтах. Как определить ток, написано выше  в главе «Выбираем автоматический выключатель и пусковое устройство». Обычно, найти требуемую емкость достаточно сложно, поэтому ее собирают из нескольких «кондеров», соединенных параллельно. Рассчитывается так С = С1+С2+Сn

После сборки и проверки производим кратковременный запуск, и если электродвигатель вращается не в ту сторону, переключаем конденсатор как показано ниже.

Если электродвигатель нагружен или мощность электромотора более 1 кВт, необходима дополнительная пусковая емкость. Как ее подсоединить, можно понять из иллюстрации. Она, как правило, выбирается в 2 раза выше, чем рабочая.

Возможно, Вас заинтересует — «Сборка электрощита своими руками».

Перемотка 3 х фазного двигателя в однофазный. Как перемотать однофазный двигатель на трехфазный. Виды обмоток электродвигателей и способы их изображения. Подготовка к перемотке

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Вращающееся магнитное поле асинхронного электродвигателя

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f 1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

Магнитное поле прямого проводника с постоянным током

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

Магнитное поле создаваемое трехфазным током в разный момент времени

Действие вращающегося магнитного поля на замкнутый виток

Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно будет действовать сила, в результате чего контур начнет вращаться.

Короткозамкнутый ротор асинхронного двигателя

Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться. На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля. Изменение тока в стержнях будет изменяться со временем.

Вращающееся магнитное поле пронизывающее короткозамкнутый ротор

Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

Скольжение асинхронного двигателя. Скорость вращения ротора

Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n 2

Методика измерений следующая:

Стоит также рассказать о методике, позволяющей определить место межвиткового замыкания. Это делается следующим образом:

Подготовительные работы

Для начала разберемся, как правильно перемотать электродвигатель. Первое что следует сделать – это определить параметры провода и количество витков в катушке. Тут поможет интернет. На форумах люди обсуждают подобные проблемы, а так же рассказывают о личном опыте, как они перематывали двигатели.

При отсутствии нужной информации в интернете, можно узнать ее самостоятельно при осмотре «движка». При сильном выгорании «укладок» находим наиболее целый участок обмотки. Его нужно почистить.

Чтобы избавить провода от нагара воспользуйтесь растворителями. Теперь «катушки» не стоит жалеть, они уже не пригодны. Если не получается очистить обмотку растворителем, то можно ее обжечь.

Есть различные схемы перемотки электродвигателей

Прежде чем извлекать «катушки», следует обратить внимание, как они соединены между собой. И тогда в точности можно скопировать их сборку

Выступающую верхушку «укладки» надо срезать. Для этого подготовим соответствующий инструмент, все зависит от сечения провода. Чем оно больше, тем серьезнее инструмент понадобится. Срезанную часть нужно разделить на отдельные провода. Так удобнее определить сечение и количество витков.

Сняв обмотку, проверяем железо, на которую она была намотана. Сталь должна быть гладкой без вмятин и заусенций. Дефекты способны повредить изоляционный слой медных проводов, что приведет к очередному пробою. Поэтому все неровности следует зачистить наждачной бумагой.

Принцип работы двигателя

При работе электродвигателя, подключенного к трехфазной сети 380 В, в каждую из его обмоток последовательно подается напряжение и по каждой из них протекает ток, создающий переменное магнитное поле, которое воздействует на ротор, закрепленный подвижно на подшипниках, который заставляет его вращаться. Для запуска при таком варианте работы никаких дополнительных элементов не нужно.

Если один из трехфазных асинхронных электродвигателей подключить к однофазной сети 220 В, то вращающий момент не возникнет и двигатель не запустится. Для запуска от однофазной сети трехфазных устройств, придумано множество различных вариантов.

Одним из самых простых и распространенных среди них является применение фазового сдвига. Для этого используются различные фазосдвигающие конденсаторы для электродвигателей, через которые подключается контакт третьей фазы.

Кроме этого, обязательно наличие еще одного элемента. Это пусковой конденсатор. Он предназначен для запуска самого двигателя и должен работать только в момент запуска порядка 2-3 секунд. Если его оставить включенным на длительное время, то обмотки двигателя быстро перегреются и он выйдет из строя.

Величина емкости: рабочей и пусковой

Удельную ёмкость этих элементов можно высчитать, используя онлайн-калькулятор в сети интернет. Расчёт делают, самостоятельно пользуясь формулами.

Для запускающего элемента

Известны две формулы для определения ёмкости пускового двухполюсника:

  • для схемы «звезда» – Cп = 2800*I/U;
  • для схемы «треугольник» – Cп = 4800*I/U.

Номинальный ток рассчитывают, пользуясь выражением:

I = P/(1,73*U*η*cosϕ.

Здесь:

  • P – мощность мотора;
  • U – напряжение сети;
  • η – КПД;
  • cosϕ – коэффициент мощности.

Для рабочего элемента

Подобрать рабочий конденсатор можно из расчёта:

Cp = 1/2 Cп.

Запущенный и устойчиво работающий двигатель нуждается в применении рабочей ёмкости для вращения под нагрузкой.

Как подключить электродвигатель с 380 на 220В без конденсатора?

Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.

Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.

Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.

Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.

По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.

Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.

Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.

Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.

Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.

Основные элементы схемы — симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй — сигналами, поступающими от полупериода питающего напряжения.

Схема №1.

Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.

В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).

Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.

Греется электродвигатель 220 и 380 Вольт, причины и способы их устранения

Схема №2.

Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.

Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.

Особенность — применение двух электронных ключей, замещающих фазосдвигающие конденсаторы

В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках

Делается это следующим образом:

  • Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
  • После нажатия на кнопку требуется подобрать момент пуска с помощью резистора R

При реализации рассмотренных схем стоит учесть ряд особенностей:

  • Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
  • Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток — дефицитность этого динистора.

Принципы работы электронной схемы: запуск трехфазного асинхронного электродвигателя без конденсаторов

Для подключения в однофазную сеть по этому методу подойдет любой асинхронный движок типового исполнения.

Автор Голик обращает внимание, что обороты ротора в минуту должны составлять не 3000, а 1500. Связано это с конструкцией обмоток статора

Мощность устройства ограничена электрическими характеристиками силовых диодов и тиристоров — 10 ампер с величиной обратного напряжения более 300 вольт.

Три обмотки статора необходимо подключать по схеме треугольника.

Их выводы собираются на клеммной колодке тремя последовательными перемычками.

Напряжение 220 вольт подключается через защитный автоматический выключатель параллельно одной обмотке, назовем ее «A». Две другие оказываются последовательно соединенными между собой и параллельно — с ней.

Обозначим их «B» и «C». На выводы одной из них, например, «B» подключается электронный блок. Назовем его ключом «k».

Представим, что ее контакт всегда разомкнут, а напряжение подано. Тогда по цепочкам «A» и «B+C» станут протекать токи Ia и Ib+c. Мы знаем, что сопротивление всех обмоток статора (резистивно-индуктивное) одинаково.

Поэтому в цепи «A» ток станет в два раза превышать вектор Ib+c, а по фазе они будут совпадать.

Каждый из этих токов создаст вокруг себя магнитный поток. Но, они не смогут в этой ситуации привести во вращение ротор.

Чтобы электродвигатель стал работать, необходимо сдвинуть по углу два этих магнитных потока (или токи между собой). Эту функцию в нашем случае выполняет электронный ключ.

Его конструкция собрана так, что он кратковременно замыкается, а затем размыкается, шунтируя обмотку «B».

Для этого процесса выбирается момент времени, когда синусоида напряжения достигает максимального амплитудного значения, а сила тока в обмотке «C», ввиду ее индуктивного сопротивления, минимальна.

Резкое закорачивание сопротивления «B» в цепи «B+C» создает бросок тока через замкнутый электронный контакт по виткам обмотки «C», который быстро возрастает и затем снижается под влиянием уменьшения амплитуды напряжения до нуля.

Между токами в обмотках «A» и «C» образуется временной сдвиг, обозначенный буквой φ. За счет возникновения этого угла сдвига фаз создается суммирующий магнитный поток, начинающий раскрутку ротора двигателя.

Форма тока в обмотке «C» при работе электронного ключа отличается от гармоничной синусоиды, но она не мешает создать на валу ротора крутящий момент.

При переходе полуволны синусоиды напряжения в область отрицательных значений картина повторяется, а двигатель продолжает раскручиваться дальше.

Преимущества схемы тиристорного преобразователя: автор В Соломыков

Эта разработка позволяет максимально эффективно сохранить мощность асинхронного двигателя при его подключении в однофазную сеть. Она является прообразом современных частотных преобразователей, но выполнена на старой и доступной элементной базе.

Тиристорный преобразователь позволяет сделать формы напряжений на каждой фазе очень похожими на идеальные, гармоничные синусоиды, под которые и создается асинхронный электродвигатель.

Питание от сети 220 вольт происходит через защиту — автоматический выключатель SF1 и диодный мост на базе Д233В.

Силовые выходные цепи образуются работой тиристорных ключей VS1-VS6.

Сдвиг фаз токов для питания каждой обмотки двигателя своим напряжением создается работой двух микросхем:

  1. DD1 — К176ЛЕ5;
  2. DD2 — К176 ИР2.

Они формируют такты сдвига напряжений сигналов в регистрах, а их сочетания подаются на входы управления тиристорами VS1÷VS6 через индивидуальные транзисторы VT1÷VT6 по запланированной временной диаграмме.

Логическая часть

Микросхема К176ИР2 вырабатывает по 2 раздельных 4-х разрядных регистра сдвига с четырьмя выходами Q от любого триггера. Каждый триггер двухступенчатый, типа D.

Ввод данных в регистр происходит через вход D. Также имеется вход для тактовых импульсов типа C. Они поступают через вход D 1-го триггера, а затем смещаются по ходу вправо на один такт.

Обнуление данных на выходе регистра Q происходит при поступлении на вход R (асинхронный сброс) напряжения логического уровня.

Таблица данных К176ИР2 и состояний регистров

Число разрядов

4х2

Входы

Выход

Сторона сдвига

Направо

C

D

R

Q0

Qn

Тип ввода

Последовательно

H

Н

H

Qn-1

Тип вывода

Параллельно

B

H

B

Qn-1

Тактовая частота

2,5MHz

X

H

Q1

Qn не меняется

Рабочая температура

-45÷+85

X

X

B

H

H

Работой микросхемы К176ИР2 управляет элементы DD1 на сборке К176ЛЕ5.

Они обеспечивают подачу импульсов на управляющие электроды тиристоров по следующей временной диаграмме.

Силовая часть схемы, принципы ее управления и наладки

При подаче напряжения на схему обнуляется регистр сдвига микросхемы DD2 до окончания заряда емкости C2 по цепочке через R5. В момент заряда срабатывает логический элемент DD1.1, разрешающий сдвиг импульса регистру DD2.

При переходе регистра в положение «логической 1» подается сигнал на базу его биполярного транзистора (VT1÷VT6). Последний открывается и подает команду на управляющий электрод своего тиристора.

В результате работы этой цепочки между выходными силовыми клеммами создается трехфазное напряжение (довольно близкое к синусоидальной форме) со сдвигом векторов между собой на 120 градусов.

Асинхронный двигатель, работающий по этой схеме, развивает наибольшую мощность по сравнению с тремя предыдущими вариантами.

Частота коммутации тиристоров подбирается экспериментально при наладке за счет выбора номиналов емкостей С4, С5, С6. Их номиналы зависят от мощности электродвигателя.

Емкость конденсаторов предварительно рассчитывают по формуле:

При номинальной частоте вращения ротора выставляют n=1.

Резисторы R3 и R4 после окончания настройки устройства демонтируют, а вместо R4 запаивают конденсатор с емкостью 0,68 микрофарад.

Затем к точкам A и B припаивают регулировочный резистор на 15 килоом. Его назначение — точное выставление частоты вращения ротора у двигателя.

Все четыре схемы, которые я привел, не содержат дефицитных деталей и могут быть собраны в домашних условиях людьми с начальным уровнем навыков электрика.

Для продвинутых мастеров могу порекомендовать схему, по которой выполнил подключение трехфазного двигателя к однофазной сети без конденсаторов на современной электронной базе владелец сайта Радиокот.

Он фактически собрал частотный преобразователь, которому отдал много времени. К тому же простым паяльником и обычным цифровым мультиметром там отделаться не получится. Нужны практические навыки, специальный инструмент, осциллограф для наладки.

Все это я написал, чтобы подвести вас к выводу: запустить асинхронный двигатель на 3 фазы в сеть 220 вольт без потерь мощности можно только через промышленный частотный преобразователь.

Рекомендую посмотреть два коротких видеоролика по этой теме и сравнить результат.

Видео владельца Kick Ass с самодельным регулятором по схеме В Голик.

Видео владельца Capricorn WorkShop о самом простом частотном преобразователе.

Выводы сделайте сами. А если остались еще вопросы и неясности, или заметили случайную ошибку, то воспользуйтесь разделом комментариев. Обязательно обсудим.

Что можно переделывать

Для переделки подойдут маломощные электродвигатели 380 Вольт: до 3 кВт. Теоритически переподключаются и мощные моторы. Но это дополнительно повлечет за собой установку отдельного автомата в электрощите и проведение специальной проводки. И эти работы теряют смысл, если вдруг обнаруживается, что такую нагрузку не потянет вводной кабель.

Даже если ваша сеть держит высокие нагрузки, и вам удалось переделать двигатель от 3 кВт с 380 на 220 Вольт, вы огорчитесь при первом его пуске в ход. Запуск будет тяжелым. Вы решите, что труд был напрасным. Поэтому если переделывать, то именно маломощные модели.

Методика перемотки электродвигателя

Начинают ремонтные работы с демонтажа двигателя. Производят внешний осмотр и очищают от загрязнений.

После чего придерживаются алгоритма:

  • Разбирают двигатель.
  • Производят осмотр. Если явных признаков нет, прозванивают обмотки тестером. Находят неисправность, которая может проявляться как короткое замыкание витков, обрыв проводов или короткое на корпус.
  • При определении неисправности с помощью тестера учитывают, обмотки трехфазного двигателя имеют одинаковое сопротивление, а сопротивление относительно корпуса стремится к бесконечности. У однофазного двигателя с пусковой обмоткой, сопротивление пусковой будет больше, у чем рабочей.
  • Проверяют обмотку якоря.

Перемотка статора

Найдя неисправность статора двигателя, вырезают все обмотки. Очищают поверхность статора и пазы от загрязнений и лака. По справочнику определяют количество витков, сечение, тип провода и способ намотки.

Подключение фазосдвигающих конденсаторов

Как подключить вольтметр

Для нормальной работы электромашине необходимы пусковые и рабочие ёмкости.

Выбор номинала рабочего конденсатора

Есть разные формулы для определения необходимой ёмкости рабочего конденсатора, учитывающие номинальный ток, cosφ и другие параметры, но чаще всего просто берётся 7мкФ на 100Вт или 70мкФ на 1кВт мощности.

После сборки схемы целесообразно включить последовательно с машиной амперметр и, увеличивая и уменьшая рабочую ёмкость, добиться минимальной величины показаний прибора.

Выбор и подключение пусковых конденсаторов

Пуск с использованием только рабочих фазосдвигающих конденсаторов длительный, а при значительном моменте на валу машины невозможен. Для облегчения пуска и уменьшения его длительности на период разгона электромашины параллельно рабочим подключаются пусковые ёмкости. Они выбираются в 2-3 раза больше, чем рабочие. Номинальное напряжение также более 300В. Пуск происходит несколько секунд, поэтому допускается подсоединение электролитических конденсаторов.

Перемотка якоря

Процесс замены обмотки коллекторного двигателя несколько похож за исключением небольших нюансов, связанных с особенностью исполнения. Например, на перемотку отправляют якорь, а не корпус, при условии, что проблема возникла не с катушками возбуждения. Помимо этого имеются следующие отличия:

  • Для намотки применяется специальный станок, более сложной конфигурации.
  • Обязательно необходима проточка, балансировка якоря (в финальной части процесса), а также его чистка и шлифовка.
  • При помощи специального фрезерного станка производится нарезка коллектора.

Для перечисленных процессов требует спецоборудование, без него перемотка электродвигателей – пустая трата времени.

Во многих бытовых приборах сегодня используются электродвигатели. Главная их особенность в том, что они работают асинхронно. Это позволяет держать постоянную частоту вращения ротора даже при меняющихся нагрузках.

Все выпускаемые электродвигатели имеют разные конструктивные особенности. Каждая модификация может отличаться по количеству полюсов, типу ротора, и других составных частей. Технология перемотки электродвигателей делается по общему принципу, в некоторых нюансах могут быть различия.

Если устройство вышло из строя, то нужно обратиться в мастерскую. При ее отсутствии можно попытаться сделать перемотку двигателя в домашних условиях. Желательно иметь для этого необходимые навыки, но в целом этот процесс не такой сложный на вид.

«Движки» имеют два типа обмотки:

  • статорная;
  • роторная.

Если учесть, что конструкция и размеры устройств разные, можно дать общую инструкцию для перемотки двигателей. Остановимся на тех, которые используются в бытовых приборах и питаются от переменного тока.

Как отличить на однофазном двигателе

Однофазные двигатели оснащаются двумя типами обмотки для того, чтобы их ротор мог вращаться, поскольку только одной для этого недостаточно. Поэтому перед подключением двигателя необходимо разобраться, какой моток является основным, а какой вспомогательным. Сделать это можно несколькими способами.

По цветовой маркировке

К какому типу относится конкретный моток, можно определить по цветовой маркировке во время визуального осмотра двигателя. Как правило, красные провода относятся к рабочему типу, а вот синие – вспомогательному.

Но во всех правилах есть свои исключения, поэтому всегда необходимо обращать внимание на бирку электродвигателя, на которую наносится расшифровка всех маркировок

Однако если двигатель уже был в ремонте или на нем отсутствует бирка, данный способ проверки является не эффективным. В первом случае во время ремонтных работ могло полностью поменяться внутреннее содержимое мотора, а во втором – нет возможности безошибочно расшифровать цветные обозначения. К тому же иногда маркировка может вообще отсутствовать. Поэтому в таких ситуациях, лучше прибегнуть к другому, более достоверному способу.

По толщине проводов

Толщина проводов, которые выходят из электромашины небольшой мощности, поможет отличить пусковую катушку от рабочей. Поскольку вспомогательная работает непродолжительное время и не испытывает серьезной нагрузки, то провода, относящиеся к ней, будут более тонкими.

Но даже если она бросается в глаза, опираться только на это не стоит. Поэтому многие всегда измеряют сопротивление проводов.

При помощи мультиметра

Мультиметр – специальный прибор, позволяющий измерить сопротивление проводов, а также их целостность. Для этого необходимо следовать следующему алгоритму:

  1. Возьмите мультиметр и выберите нужную функцию.

  1. Снимите изоляцию с проводов двигателя, и соедините два любые из них со щупами прибора. Так происходит замер силы сопротивления между двумя проводами мотора.

  1. Если на экране прибора не появилось никаких числовых значений, то необходимо заменить один из проводов, и после этого повторить процедуру. Полученные показания будут относиться к выводам одного мотка.
  2. Подключите щупы измерительного прибора к оставшимся жилам и зафиксируйте показания.
  3. Сравните полученные результаты. Электропровода с более сильным сопротивлением будут относиться к пусковой катушке, а с более слабым – к рабочей.

После того, как замеры будут определены и станет понятно, какие электропровода к какой катушке относятся, рекомендовано промаркировать их любым удобным способом. Это позволит в дальнейшем пропускать процедуру измерения сопротивления при подключении двигателя.

Отличить, где находиться пусковая, а где рабочая обмотка однофазного мотора, можно несколькими способами. Однако наиболее действенным из них является измерение сопротивления электропроводов, отходящих из электромотора малой мощности, с помощью мультиметра.

Как переделать электродвигатель с 380 на 220

Электродвигатель переключается с одного вида напряжения на другой при помощи специальных подключений обмоток. Для 380-ти вольт – это положение «звезда», а для 220-ти вольт применяется «треугольник». На практике, схема переключения «звезда-треугольник» осуществляются с помощью специальных колодок подключения, установленных на двигателе. Колодка имеет шесть выводов, соединенных перемычками в определенном порядке.

При отсутствии в двигателе колодок и наличии шести выводов, провода собираются в пучки, по три вывода в каждом. Один пучок содержит в себе начало обмотки, а другой пучок является концом обмотки, то есть обмотки последовательно соединяются между собой.

Таким образом, вопрос, как переделать трехфазный двигатель для подключения в однофазную сеть, технически вполне решаемый. Однако, применяемые в цепи конденсаторы, вовсе не способствуют нормальной работе электродвигателя. Конечно, электродвигатель будет работать, но его максимальная мощность будет составлять всего 70% от номинальной.

Пусковой момент находится в прямой зависимости от величины пусковой емкости конденсатора. Постоянно изменяющаяся нагрузка вызывает определенные сложности при подборе оптимальной емкости. Применение трехфазного двигателя в однофазной сети является вынужденной мерой, хотя во многих ситуациях, это единственный выход.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Мастер Юрий Меркулов
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Как подключить электродвигатель 380в на 220в

Проверка и сборка

Если всё работает нормально, то механизм разбирают снова для покрытия обмоток статора лаком. Статор помещают в лак для пропитки обмоток и заполнения пустот. Затем его поднимают, давая стечь лаку, и сушат на открытом воздухе или в специальной сушилке. Для ускорения сушки применяют лампу накаливания мощностью 0,5-1 кВт, вставленную в статор и включённую в сеть.

После просушки двигателя производят его полную сборку, ещё раз проверяют сопротивление изоляции. Делают проверку двигателя на холостом ходу. Лучше для этой цели использовать понижающий трансформатор и автоматический выключатель (желательно УЗО). Только после проверки можно использовать двигатель на полном напряжении.

Правильно провести перемотку помогут следующие советы специалистов:

Однофазный асинхронный электродвигатель с короткозамкнутым ротором должен иметь пусковую и рабочую обмотки. Их расчет производят так же, как расчет обмоток трехфазных асинхронных двигателей.

Меньшие значения коэффициента берутся для двигателей большей мощности (около 1 кВт) с кратковременным и повторно-кратковременным режимами работы.

Пусковая обмотка укладывается в 1/3 пазов.

Наиболее распространены два варианта пусковых обмоток: с бифилярными катушками и с дополнительным внешним сопротивлением.

Обмотка с бифилярными катушками наматывается из двух параллельных проводников с разным направлением тока (индуктивное сопротивление рассеяния бифилярных обмоток близко к нулю).

Подключение трехфазного асинхронного двигателя на 220в.

Бытовые электросети однофазные 220 вольт. Возникает вопрос, как подключить трехфазный двигатель к однофазной электросети? Да просто, небольшой электромотор, примерно до 1кВт – можно подключить, и даже имеется несколько схем. Не станем вдаваться в скучные расчеты, а рассмотрим рисунки и обсудим принцип работы.

На рисунках мы видим, как включить электромотор в сеть 220в. Фазу подсоединяем к U1 (С1) фазу, к V1 (C2) – ноль, а на свободную клемму W1 (C3) вешаем конденсатор. Для этих целей подойдут МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60 на 450 вольт. Расчет производится по формулам: для «Υ» C =   , для «Δ» — C = , где С – емкость конденсатора, I – сила тока в амперах и U – напряжение в вольтах. Как определить ток, написано выше  в главе «Выбираем автоматический выключатель и пусковое устройство». Обычно, найти требуемую емкость достаточно сложно, поэтому ее собирают из нескольких «кондеров», соединенных параллельно. Рассчитывается так С = С1+С2+Сn

После сборки и проверки производим кратковременный запуск, и если электродвигатель вращается не в ту сторону, переключаем конденсатор как показано ниже.

Если электродвигатель нагружен или мощность электромотора более 1 кВт, необходима дополнительная пусковая емкость. Как ее подсоединить, можно понять из иллюстрации. Она, как правило, выбирается в 2 раза выше, чем рабочая.

Возможно, Вас заинтересует — «Сборка электрощита своими руками».

Перемотка 3 х фазного двигателя в однофазный. Как перемотать однофазный двигатель на трехфазный. Виды обмоток электродвигателей и способы их изображения. Подготовка к перемотке

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Вращающееся магнитное поле асинхронного электродвигателя

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f 1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

Магнитное поле прямого проводника с постоянным током

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

Магнитное поле создаваемое трехфазным током в разный момент времени

Действие вращающегося магнитного поля на замкнутый виток

Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно будет действовать сила, в результате чего контур начнет вращаться.

Короткозамкнутый ротор асинхронного двигателя

Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться. На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля. Изменение тока в стержнях будет изменяться со временем.

Вращающееся магнитное поле пронизывающее короткозамкнутый ротор

Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

Скольжение асинхронного двигателя. Скорость вращения ротора

Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n 2

Методика измерений следующая:

Стоит также рассказать о методике, позволяющей определить место межвиткового замыкания. Это делается следующим образом:

Подготовительные работы

Для начала разберемся, как правильно перемотать электродвигатель. Первое что следует сделать – это определить параметры провода и количество витков в катушке. Тут поможет интернет. На форумах люди обсуждают подобные проблемы, а так же рассказывают о личном опыте, как они перематывали двигатели.

При отсутствии нужной информации в интернете, можно узнать ее самостоятельно при осмотре «движка». При сильном выгорании «укладок» находим наиболее целый участок обмотки. Его нужно почистить.

Чтобы избавить провода от нагара воспользуйтесь растворителями. Теперь «катушки» не стоит жалеть, они уже не пригодны. Если не получается очистить обмотку растворителем, то можно ее обжечь.

Есть различные схемы перемотки электродвигателей

Прежде чем извлекать «катушки», следует обратить внимание, как они соединены между собой. И тогда в точности можно скопировать их сборку

Выступающую верхушку «укладки» надо срезать. Для этого подготовим соответствующий инструмент, все зависит от сечения провода. Чем оно больше, тем серьезнее инструмент понадобится. Срезанную часть нужно разделить на отдельные провода. Так удобнее определить сечение и количество витков.

Сняв обмотку, проверяем железо, на которую она была намотана. Сталь должна быть гладкой без вмятин и заусенций. Дефекты способны повредить изоляционный слой медных проводов, что приведет к очередному пробою. Поэтому все неровности следует зачистить наждачной бумагой.

Принцип работы двигателя

При работе электродвигателя, подключенного к трехфазной сети 380 В, в каждую из его обмоток последовательно подается напряжение и по каждой из них протекает ток, создающий переменное магнитное поле, которое воздействует на ротор, закрепленный подвижно на подшипниках, который заставляет его вращаться. Для запуска при таком варианте работы никаких дополнительных элементов не нужно.

Если один из трехфазных асинхронных электродвигателей подключить к однофазной сети 220 В, то вращающий момент не возникнет и двигатель не запустится. Для запуска от однофазной сети трехфазных устройств, придумано множество различных вариантов.

Одним из самых простых и распространенных среди них является применение фазового сдвига. Для этого используются различные фазосдвигающие конденсаторы для электродвигателей, через которые подключается контакт третьей фазы.

Кроме этого, обязательно наличие еще одного элемента. Это пусковой конденсатор. Он предназначен для запуска самого двигателя и должен работать только в момент запуска порядка 2-3 секунд. Если его оставить включенным на длительное время, то обмотки двигателя быстро перегреются и он выйдет из строя.

Величина емкости: рабочей и пусковой

Удельную ёмкость этих элементов можно высчитать, используя онлайн-калькулятор в сети интернет. Расчёт делают, самостоятельно пользуясь формулами.

Для запускающего элемента

Известны две формулы для определения ёмкости пускового двухполюсника:

  • для схемы «звезда» – Cп = 2800*I/U;
  • для схемы «треугольник» – Cп = 4800*I/U.

Номинальный ток рассчитывают, пользуясь выражением:

I = P/(1,73*U*η*cosϕ.

Здесь:

  • P – мощность мотора;
  • U – напряжение сети;
  • η – КПД;
  • cosϕ – коэффициент мощности.

Для рабочего элемента

Подобрать рабочий конденсатор можно из расчёта:

Cp = 1/2 Cп.

Запущенный и устойчиво работающий двигатель нуждается в применении рабочей ёмкости для вращения под нагрузкой.

Как подключить электродвигатель с 380 на 220В без конденсатора?

Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.

Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.

Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.

Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.

По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.

Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.

Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.

Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.

Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.

Основные элементы схемы — симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй — сигналами, поступающими от полупериода питающего напряжения.

Схема №1.

Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.

В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).

Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.

Греется электродвигатель 220 и 380 Вольт, причины и способы их устранения

Схема №2.

Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.

Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.

Особенность — применение двух электронных ключей, замещающих фазосдвигающие конденсаторы

В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках

Делается это следующим образом:

  • Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
  • После нажатия на кнопку требуется подобрать момент пуска с помощью резистора R

При реализации рассмотренных схем стоит учесть ряд особенностей:

  • Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
  • Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток — дефицитность этого динистора.

Принципы работы электронной схемы: запуск трехфазного асинхронного электродвигателя без конденсаторов

Для подключения в однофазную сеть по этому методу подойдет любой асинхронный движок типового исполнения.

Автор Голик обращает внимание, что обороты ротора в минуту должны составлять не 3000, а 1500. Связано это с конструкцией обмоток статора

Мощность устройства ограничена электрическими характеристиками силовых диодов и тиристоров — 10 ампер с величиной обратного напряжения более 300 вольт.

Три обмотки статора необходимо подключать по схеме треугольника.

Их выводы собираются на клеммной колодке тремя последовательными перемычками.

Напряжение 220 вольт подключается через защитный автоматический выключатель параллельно одной обмотке, назовем ее «A». Две другие оказываются последовательно соединенными между собой и параллельно — с ней.

Обозначим их «B» и «C». На выводы одной из них, например, «B» подключается электронный блок. Назовем его ключом «k».

Представим, что ее контакт всегда разомкнут, а напряжение подано. Тогда по цепочкам «A» и «B+C» станут протекать токи Ia и Ib+c. Мы знаем, что сопротивление всех обмоток статора (резистивно-индуктивное) одинаково.

Поэтому в цепи «A» ток станет в два раза превышать вектор Ib+c, а по фазе они будут совпадать.

Каждый из этих токов создаст вокруг себя магнитный поток. Но, они не смогут в этой ситуации привести во вращение ротор.

Чтобы электродвигатель стал работать, необходимо сдвинуть по углу два этих магнитных потока (или токи между собой). Эту функцию в нашем случае выполняет электронный ключ.

Его конструкция собрана так, что он кратковременно замыкается, а затем размыкается, шунтируя обмотку «B».

Для этого процесса выбирается момент времени, когда синусоида напряжения достигает максимального амплитудного значения, а сила тока в обмотке «C», ввиду ее индуктивного сопротивления, минимальна.

Резкое закорачивание сопротивления «B» в цепи «B+C» создает бросок тока через замкнутый электронный контакт по виткам обмотки «C», который быстро возрастает и затем снижается под влиянием уменьшения амплитуды напряжения до нуля.

Между токами в обмотках «A» и «C» образуется временной сдвиг, обозначенный буквой φ. За счет возникновения этого угла сдвига фаз создается суммирующий магнитный поток, начинающий раскрутку ротора двигателя.

Форма тока в обмотке «C» при работе электронного ключа отличается от гармоничной синусоиды, но она не мешает создать на валу ротора крутящий момент.

При переходе полуволны синусоиды напряжения в область отрицательных значений картина повторяется, а двигатель продолжает раскручиваться дальше.

Преимущества схемы тиристорного преобразователя: автор В Соломыков

Эта разработка позволяет максимально эффективно сохранить мощность асинхронного двигателя при его подключении в однофазную сеть. Она является прообразом современных частотных преобразователей, но выполнена на старой и доступной элементной базе.

Тиристорный преобразователь позволяет сделать формы напряжений на каждой фазе очень похожими на идеальные, гармоничные синусоиды, под которые и создается асинхронный электродвигатель.

Питание от сети 220 вольт происходит через защиту — автоматический выключатель SF1 и диодный мост на базе Д233В.

Силовые выходные цепи образуются работой тиристорных ключей VS1-VS6.

Сдвиг фаз токов для питания каждой обмотки двигателя своим напряжением создается работой двух микросхем:

  1. DD1 — К176ЛЕ5;
  2. DD2 — К176 ИР2.

Они формируют такты сдвига напряжений сигналов в регистрах, а их сочетания подаются на входы управления тиристорами VS1÷VS6 через индивидуальные транзисторы VT1÷VT6 по запланированной временной диаграмме.

Логическая часть

Микросхема К176ИР2 вырабатывает по 2 раздельных 4-х разрядных регистра сдвига с четырьмя выходами Q от любого триггера. Каждый триггер двухступенчатый, типа D.

Ввод данных в регистр происходит через вход D. Также имеется вход для тактовых импульсов типа C. Они поступают через вход D 1-го триггера, а затем смещаются по ходу вправо на один такт.

Обнуление данных на выходе регистра Q происходит при поступлении на вход R (асинхронный сброс) напряжения логического уровня.

Таблица данных К176ИР2 и состояний регистров

Число разрядов

4х2

Входы

Выход

Сторона сдвига

Направо

C

D

R

Q0

Qn

Тип ввода

Последовательно

H

Н

H

Qn-1

Тип вывода

Параллельно

B

H

B

Qn-1

Тактовая частота

2,5MHz

X

H

Q1

Qn не меняется

Рабочая температура

-45÷+85

X

X

B

H

H

Работой микросхемы К176ИР2 управляет элементы DD1 на сборке К176ЛЕ5.

Они обеспечивают подачу импульсов на управляющие электроды тиристоров по следующей временной диаграмме.

Силовая часть схемы, принципы ее управления и наладки

При подаче напряжения на схему обнуляется регистр сдвига микросхемы DD2 до окончания заряда емкости C2 по цепочке через R5. В момент заряда срабатывает логический элемент DD1.1, разрешающий сдвиг импульса регистру DD2.

При переходе регистра в положение «логической 1» подается сигнал на базу его биполярного транзистора (VT1÷VT6). Последний открывается и подает команду на управляющий электрод своего тиристора.

В результате работы этой цепочки между выходными силовыми клеммами создается трехфазное напряжение (довольно близкое к синусоидальной форме) со сдвигом векторов между собой на 120 градусов.

Асинхронный двигатель, работающий по этой схеме, развивает наибольшую мощность по сравнению с тремя предыдущими вариантами.

Частота коммутации тиристоров подбирается экспериментально при наладке за счет выбора номиналов емкостей С4, С5, С6. Их номиналы зависят от мощности электродвигателя.

Емкость конденсаторов предварительно рассчитывают по формуле:

При номинальной частоте вращения ротора выставляют n=1.

Резисторы R3 и R4 после окончания настройки устройства демонтируют, а вместо R4 запаивают конденсатор с емкостью 0,68 микрофарад.

Затем к точкам A и B припаивают регулировочный резистор на 15 килоом. Его назначение — точное выставление частоты вращения ротора у двигателя.

Все четыре схемы, которые я привел, не содержат дефицитных деталей и могут быть собраны в домашних условиях людьми с начальным уровнем навыков электрика.

Для продвинутых мастеров могу порекомендовать схему, по которой выполнил подключение трехфазного двигателя к однофазной сети без конденсаторов на современной электронной базе владелец сайта Радиокот.

Он фактически собрал частотный преобразователь, которому отдал много времени. К тому же простым паяльником и обычным цифровым мультиметром там отделаться не получится. Нужны практические навыки, специальный инструмент, осциллограф для наладки.

Все это я написал, чтобы подвести вас к выводу: запустить асинхронный двигатель на 3 фазы в сеть 220 вольт без потерь мощности можно только через промышленный частотный преобразователь.

Рекомендую посмотреть два коротких видеоролика по этой теме и сравнить результат.

Видео владельца Kick Ass с самодельным регулятором по схеме В Голик.

Видео владельца Capricorn WorkShop о самом простом частотном преобразователе.

Выводы сделайте сами. А если остались еще вопросы и неясности, или заметили случайную ошибку, то воспользуйтесь разделом комментариев. Обязательно обсудим.

Что можно переделывать

Для переделки подойдут маломощные электродвигатели 380 Вольт: до 3 кВт. Теоритически переподключаются и мощные моторы. Но это дополнительно повлечет за собой установку отдельного автомата в электрощите и проведение специальной проводки. И эти работы теряют смысл, если вдруг обнаруживается, что такую нагрузку не потянет вводной кабель.

Даже если ваша сеть держит высокие нагрузки, и вам удалось переделать двигатель от 3 кВт с 380 на 220 Вольт, вы огорчитесь при первом его пуске в ход. Запуск будет тяжелым. Вы решите, что труд был напрасным. Поэтому если переделывать, то именно маломощные модели.

Методика перемотки электродвигателя

Начинают ремонтные работы с демонтажа двигателя. Производят внешний осмотр и очищают от загрязнений.

После чего придерживаются алгоритма:

  • Разбирают двигатель.
  • Производят осмотр. Если явных признаков нет, прозванивают обмотки тестером. Находят неисправность, которая может проявляться как короткое замыкание витков, обрыв проводов или короткое на корпус.
  • При определении неисправности с помощью тестера учитывают, обмотки трехфазного двигателя имеют одинаковое сопротивление, а сопротивление относительно корпуса стремится к бесконечности. У однофазного двигателя с пусковой обмоткой, сопротивление пусковой будет больше, у чем рабочей.
  • Проверяют обмотку якоря.

Перемотка статора

Найдя неисправность статора двигателя, вырезают все обмотки. Очищают поверхность статора и пазы от загрязнений и лака. По справочнику определяют количество витков, сечение, тип провода и способ намотки.

Подключение фазосдвигающих конденсаторов

Как подключить вольтметр

Для нормальной работы электромашине необходимы пусковые и рабочие ёмкости.

Выбор номинала рабочего конденсатора

Есть разные формулы для определения необходимой ёмкости рабочего конденсатора, учитывающие номинальный ток, cosφ и другие параметры, но чаще всего просто берётся 7мкФ на 100Вт или 70мкФ на 1кВт мощности.

После сборки схемы целесообразно включить последовательно с машиной амперметр и, увеличивая и уменьшая рабочую ёмкость, добиться минимальной величины показаний прибора.

Выбор и подключение пусковых конденсаторов

Пуск с использованием только рабочих фазосдвигающих конденсаторов длительный, а при значительном моменте на валу машины невозможен. Для облегчения пуска и уменьшения его длительности на период разгона электромашины параллельно рабочим подключаются пусковые ёмкости. Они выбираются в 2-3 раза больше, чем рабочие. Номинальное напряжение также более 300В. Пуск происходит несколько секунд, поэтому допускается подсоединение электролитических конденсаторов.

Перемотка якоря

Процесс замены обмотки коллекторного двигателя несколько похож за исключением небольших нюансов, связанных с особенностью исполнения. Например, на перемотку отправляют якорь, а не корпус, при условии, что проблема возникла не с катушками возбуждения. Помимо этого имеются следующие отличия:

  • Для намотки применяется специальный станок, более сложной конфигурации.
  • Обязательно необходима проточка, балансировка якоря (в финальной части процесса), а также его чистка и шлифовка.
  • При помощи специального фрезерного станка производится нарезка коллектора.

Для перечисленных процессов требует спецоборудование, без него перемотка электродвигателей – пустая трата времени.

Во многих бытовых приборах сегодня используются электродвигатели. Главная их особенность в том, что они работают асинхронно. Это позволяет держать постоянную частоту вращения ротора даже при меняющихся нагрузках.

Все выпускаемые электродвигатели имеют разные конструктивные особенности. Каждая модификация может отличаться по количеству полюсов, типу ротора, и других составных частей. Технология перемотки электродвигателей делается по общему принципу, в некоторых нюансах могут быть различия.

Если устройство вышло из строя, то нужно обратиться в мастерскую. При ее отсутствии можно попытаться сделать перемотку двигателя в домашних условиях. Желательно иметь для этого необходимые навыки, но в целом этот процесс не такой сложный на вид.

«Движки» имеют два типа обмотки:

  • статорная;
  • роторная.

Если учесть, что конструкция и размеры устройств разные, можно дать общую инструкцию для перемотки двигателей. Остановимся на тех, которые используются в бытовых приборах и питаются от переменного тока.

Как отличить на однофазном двигателе

Однофазные двигатели оснащаются двумя типами обмотки для того, чтобы их ротор мог вращаться, поскольку только одной для этого недостаточно. Поэтому перед подключением двигателя необходимо разобраться, какой моток является основным, а какой вспомогательным. Сделать это можно несколькими способами.

По цветовой маркировке

К какому типу относится конкретный моток, можно определить по цветовой маркировке во время визуального осмотра двигателя. Как правило, красные провода относятся к рабочему типу, а вот синие – вспомогательному.

Но во всех правилах есть свои исключения, поэтому всегда необходимо обращать внимание на бирку электродвигателя, на которую наносится расшифровка всех маркировок

Однако если двигатель уже был в ремонте или на нем отсутствует бирка, данный способ проверки является не эффективным. В первом случае во время ремонтных работ могло полностью поменяться внутреннее содержимое мотора, а во втором – нет возможности безошибочно расшифровать цветные обозначения. К тому же иногда маркировка может вообще отсутствовать. Поэтому в таких ситуациях, лучше прибегнуть к другому, более достоверному способу.

По толщине проводов

Толщина проводов, которые выходят из электромашины небольшой мощности, поможет отличить пусковую катушку от рабочей. Поскольку вспомогательная работает непродолжительное время и не испытывает серьезной нагрузки, то провода, относящиеся к ней, будут более тонкими.

Но даже если она бросается в глаза, опираться только на это не стоит. Поэтому многие всегда измеряют сопротивление проводов.

При помощи мультиметра

Мультиметр – специальный прибор, позволяющий измерить сопротивление проводов, а также их целостность. Для этого необходимо следовать следующему алгоритму:

  1. Возьмите мультиметр и выберите нужную функцию.

  1. Снимите изоляцию с проводов двигателя, и соедините два любые из них со щупами прибора. Так происходит замер силы сопротивления между двумя проводами мотора.

  1. Если на экране прибора не появилось никаких числовых значений, то необходимо заменить один из проводов, и после этого повторить процедуру. Полученные показания будут относиться к выводам одного мотка.
  2. Подключите щупы измерительного прибора к оставшимся жилам и зафиксируйте показания.
  3. Сравните полученные результаты. Электропровода с более сильным сопротивлением будут относиться к пусковой катушке, а с более слабым – к рабочей.

После того, как замеры будут определены и станет понятно, какие электропровода к какой катушке относятся, рекомендовано промаркировать их любым удобным способом. Это позволит в дальнейшем пропускать процедуру измерения сопротивления при подключении двигателя.

Отличить, где находиться пусковая, а где рабочая обмотка однофазного мотора, можно несколькими способами. Однако наиболее действенным из них является измерение сопротивления электропроводов, отходящих из электромотора малой мощности, с помощью мультиметра.

Как переделать электродвигатель с 380 на 220

Электродвигатель переключается с одного вида напряжения на другой при помощи специальных подключений обмоток. Для 380-ти вольт – это положение «звезда», а для 220-ти вольт применяется «треугольник». На практике, схема переключения «звезда-треугольник» осуществляются с помощью специальных колодок подключения, установленных на двигателе. Колодка имеет шесть выводов, соединенных перемычками в определенном порядке.

При отсутствии в двигателе колодок и наличии шести выводов, провода собираются в пучки, по три вывода в каждом. Один пучок содержит в себе начало обмотки, а другой пучок является концом обмотки, то есть обмотки последовательно соединяются между собой.

Таким образом, вопрос, как переделать трехфазный двигатель для подключения в однофазную сеть, технически вполне решаемый. Однако, применяемые в цепи конденсаторы, вовсе не способствуют нормальной работе электродвигателя. Конечно, электродвигатель будет работать, но его максимальная мощность будет составлять всего 70% от номинальной.

Пусковой момент находится в прямой зависимости от величины пусковой емкости конденсатора. Постоянно изменяющаяся нагрузка вызывает определенные сложности при подборе оптимальной емкости. Применение трехфазного двигателя в однофазной сети является вынужденной мерой, хотя во многих ситуациях, это единственный выход.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Мастер Юрий Меркулов
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: