Основные способы увеличения мощности двигателя автомобиля

• Пример

Воспользуемся воображаемым примером для уяснения деталей.

Представим себе двигатель со степенью сжатия 2,0:1 и, просто ради аргумента скажем, что общий объём (нерабочий объём) одного цилиндра, когда поршень находится в НМТ (нижней мертвой точке), составляет 3.278 см3. Это объём, создаваемый поршнем при одном такте плюс объём камеры сгорания над поршнем, находящимся в положении ВМП (верхней мертвой точке). vk/com/autobap Так как степень сжатия составляет 2,0:1, то объём над поршнем, находящимся в ВМТ должен составлять половину от общего объёма цилиндра или 1.639 см3, (т. е. 1.639 см3 «выбранного« объёма плюс 1.639 см3 камеры сгорания равны 3.278 см3 общего объёма цилиндра). Даже при 3.278 см3 во всём цилиндре двигатель может втянуть только 1.639 см3 свежей рабочей смеси, т. к. имеется давление в коллекторе у впускного канала (в случае с VE, равной 100%) и только вытесненный объём поршня может работать для втягивания воздуха и топлива. Остальные 1.639 см3 будут заполнены выхлопными газами от последнего цикла сгорания.

Добавим теперь к воображаемому двигателю нагнетатель (компрессор) и отрегулируем давление так, что он будет подавать 3.278 см3 топливовоздушной смеси в цилиндр вместо исходных 1.639 см3, которые двигатель мог «вдохнуть« в прежнем состоянии. С нашим нагнетателем в цилиндре будет находиться 3.278 , см3 свежей смеси в конце и не будет остаточных выхлопных газов. Это существенно улучшит мощность. Но что произойдет, если в безрассудных поисках дополнительной мощности увеличить степень сжатия до 3,0:1, уменьшив объём камеры сгорания над поршнем в ВМТ со1.639 см3 до 1.092 см3? Когда поршень находится в конце такта впуска, общий объём цилиндра будет теперь только 2.731 см3. Если не изменять давление наддува, то оно может «вдавить« только 2.731 см3 топливовоздушной смеси в цилиндр. Это уменьшит объём смеси на 547 см3 или примерно на 17%. Двигатель втягивает менее воспламененную смесь, объёмная эффективность уменьшается (на 17%) и мощность снижается. Справедливо то, что 2.731 см3 подаваемой смеси сгорает с более высокой эффективностью благодаря увеличению степени сжатия, но улучшение степени сжатия покрывает только 5% из. 17% потерь мощности.

Увеличение крутящего момента двигателя – приемы модернизации

Такая величина, как крутящий момент, совсем мало зависит от того, насколько быстро вращается коленвал, так как он определяется объемом мотора и давлением в цилиндре. Существует несколько способов, с помощью которых его можно увеличить:

Чип тюнинг двигателя

Первый вариант тюнинга заключается в оптимизации всего, с чем работает агрегат. Система выпуска и заводские распределительные валы заменяются аналогами, с более высокой производительностью. Далее стоит заменить воздушный фильтр, дроссельную заслонку. Этот подход относительно прост и не затратный, однако можно рассчитывать на прирост мощности не более, чем на 20-30%.

Второй путь – модификация двигателя. Здесь предстоит несколько изменить характеристики двигателя. Данный способ идеален для инжекторных авто. Его суть в программном изменении чипа, подающего сигналы основным устройствам транспортного средства

Однако действовать нужно предельно осторожно, тщательно подбирая изменения, которые будут внесены

В результате такой сложной модификации, крутящий момент авто может увеличиться на 5-20%. На расходе топлива это сильно не отобразится, а в некоторых случаях он даже может снизиться. Помимо этого, достаточно высокие результаты даст прошивка.

Распределительный вал

Когда есть возможность, можно заменить обычный распредвал на спортивный, прирост производительности сразу даст изменение программы, которая управляет подачей рабочей смеси. Спортивный распределительный вал отличается от стокового профилем кулачков, а соответственно – фазами газораспределения. Это значит, что, таким образом можно добиться эффективной подачи рабочей смеси. Чем ее больше – тем больше давление на поршень. Такие действия способствуют к увеличению крутящего момента.

Доработка головки блока цилиндра

Значительный прирост производительности даст турбирование агрегата. В не модифицированном моторе сгораемая смесь, которая впускается головкой блока цилиндра, эффективно всасывается тактом. В случае модификации, смесь подается непосредственно турбиной, что позволяет существенно увеличить объем сгораемого газа, а значит и увеличить мощность.

Рабочий объем

Действенный метод увеличить крутящий момент – увеличить рабочий объем. Для этого шатуны, поршни и коленчатый вал меняются на аналоги, только с лучшими характеристиками. Такая модификация несколько увеличит крутящий момент, но только между низкими и средними оборотами агрегата. Это значит, что для получения необходимой мощности теперь не придется раскручивать мотор до максимально высоких оборотов, что положительно скажется на рабочих характеристиках.

Камера сгорания

Прирост мощности мотора даст возможность уменьшить камеру сгорания, поскольку уменьшение объема незначительно увеличит степень сжатия. Для того чтобы уменьшить камеру сгорания, вероятнее всего, придется фрезеровать головки блока цилиндра. Помимо этого, можно попробовать подобрать поршень такого размера, чтобы он занимал больший объем в верхней части. Однако стоит учитывать, что в 16-от клапанных моторах поршень, как правило, вплотную приближен к клапанам, поэтому заменить его поршнем иной формы не получится.

Поршни

Еще один способ увеличит крутящий момент – поршни двигателя заменить на более легкие аналоги. Это поможет уменьшить нагрузку на коренные шейки и коленчатый вал. Легкие поршни не так инертны, а значит – они намного легче смогут останавливаться в «мертвых точках».

Так же можно поставить поршни большего диаметра. Для этого придется расточить блоки цилиндров, однако это так же негативно скажется на динамических свойствах мотора: может уменьшиться ресурс двигателя. Прибегать к данному способу стоит в исключительных случаях.

Степень сжатия и ее влияние на параметры конца сжатия

Процесс сжатия в цилиндре дизеля начинается лишь после закрытия газораспределительных органов. В 4-тактном двигателе — после закрытия впускного клапана, в 2-тактном — после закрытия всех продувочных и выпускных органов.

В 4-тактном двигателе впускной клапан закрывается после прохождения поршнем НМТ. Однако влияние этого запаздывания закрытия клапана на параметры процесса сжатия в большинстве двигателей незначительно. Поэтому в расчетах рабочего процесса 4-тактных дизелей обычно пользуются номинальным значением степени сжатия, равным:

ε = Va /Vc = (Vs +Vc )/Vc

  • Va — объем цилиндра в момент начала сжатия;
  • Vs — рабочий объем цилиндра;
  • Vc — объем камеры сжатия.

В 2-тактных двигателях пользуются двумя понятиями: действительной степенью сжатия и степенью сжатия, отнесенной к полному ходу поршня. Действительная степень сжатия равна:

ε = Va /Vc = (Vc +Vs(1-ψs))/Vc

где Ψs — доля потерянного хода поршня от НМТ до момента закрытия выпускного (продувочного) тракта.

Степень сжатия, отнесенная к полному ходу поршня (иногда ее называют “условная степень сжатия”), может быть выражена следующим образом:

εп = (Vc +Vs)/Vc = 1+[(Va -Vc)/(1-ψs)Vc]

Параметры конца сжатия определяются из выражений:

Pc = Pa εn1 = Pa ε (Tc /Ta)

Как видно, параметры Pс и Tс возрастают с повышением Pа, Та, и n1. Значения степени сжатия (для 2-тактных ДВС имеется в виду действительная величина) находятся в пределах:

  • ε = 10 — 13 — у малооборотных дизелей;
  • ε = 8,5 — 14,5 — у среднеоборотных дизелей;
  • ε = 15 — 19 — у высокооборотных дизелей.

Нижний предел степени сжатия выбирается из условия возможности запуска холодного двигателя. Как известно, средняя температура самовоспламенения топлива составляет примерно 280° С (553° К). Для номинального режима выбирается степень сжатия, обеспечивающая минимальную температуру конца сжатия Tс min = 700-800° К.Дополнительный „запас“ температуры Tс в 150-250° К необходим с учетом того, что при пуске холодного двигателя температура стенок цилиндра низкая, показатель n1 уменьшается до 1,2 — 1,25, наблюдается повышенный пропуск заряда через поршневые кольца. В результате параметры Pс и Tс имеют более низкие значения по сравнению с номинальным режимом.

С понижением степени сжатия двигателя ухудшаются не только его пусковые качества, но и снижается термический КПД. Несмотря на это, при форсировании двигателей наддувом приходится снижать ε, чтобы обеспечить механическую прочность двигателя — снизить давление сжатия Pс и соответственно — максимальное давление в цилиндре Pz. Давление сжатия обычно находится в пределах:

  • Pс = 3.0 — 5.0 мПа — у двигателей без наддува;
  • Pс = 4.0 — 10.0 мПа — у двигателей с наддувом.

Более высокие значения ε у высокооборотных дизелей объясняется их меньшими линейными размерами и соответственно более интенсивным теплоотводом. Верхние значения ε относятся к двигателям с разделенными камерами сгорания, где относительная поверхность теплоотвода больше. Чрезмерное повышение ε, несмотря на некоторое повышение термического КПД, нецелесообразно, так как приводит к высоким Pz, увеличению потерь на трение в двигателе и к утяжелению конструкции для обеспечения механической прочности.

Чем выше компрессия, тем лучше: сказка четвертая

Частенько от апологетов разных присадок приходится слышать, как подпрыгнула компрессия после очередной обработки мотора. Рост до 15 бар, до 17 бар! Но надо иметь в виду, что в нормальном состоянии, даже восстановив зазоры до состояния нового двигателя, компрессию выше штатной не получить.

Откуда же цифры? Обычно на разобранном двигателе видно, что камера сгорания после обработки заросла непонятно чем и, как следствие, уменьшился объем камеры сжатия. Но эти отложения нарушают теплоотвод от камеры сгорания. Отсюда детонация, калильное зажигание и прочее. Так что небывалому росту компрессии не радоваться надо, а наоборот.

Изменение удельного расхода топлива при фиксированных оборотах (2500 об/мин) в двух вариантах двигателя — базовом и с кольцами, в которых увеличены зазоры. Компрессия упала, но по расходу это заметно только при малых нагрузках.

Компрессия: что это?

Компрессия – это давление газов в цилиндрах двигателя в конце такта сжатия во время вращения вала стартером при отключенном зажигания. Именно во время вращения стартером нужно измерять компрессию, так как во время работы мотора давление меняется. Этот параметр является физической величиной, а для ее измерения используют специальный прибор – компрессометр.

В теории компрессия и степень сжатия равны между собой, а вот на практике ситуация иная: степень сжатия почти всегда меньше, чем компрессия.

На это есть свои причины. Эти величины будут равны между собой, если газ в цилиндрах сжимается бесконечно долго, изометрически. В этом случае энергия, которая выделяется в процессе сжатия газа, полностью поглощалась бы поршнем, стенками цилиндров, головкой блока и другими частями мотора, благодаря чему не менялся бы тепловой баланс. Газ, который сжимается, отдает тепло и не давит на манометр с большей силой, нежели расчетная.

На практике же все абсолютно по-другому. В реальной жизни процесс сжатия газа происходит на фоне роста температуры, то есть процесс адиабатный. Если говорить простыми словами, то все тепло, которое выделяет сжатый газ, просто не успевает поглотиться стенками цилиндров, а за счет остатка и в цилиндре создается повышенное давление.

В старых моторах компрессия будет ниже, чем у новых. Это происходит за счет герметичности: новый мотор более герметичен, нежели старый, поэтому и замки колец и остальные места цилиндров не будут пропускать достаточно большое количество тепла, чтобы компрессия существенно упала.

Если двигатель работает исправно, то зачастую компрессия больше расчетной степени сжатия в 1,2 – 1,3 раза. В теории давление газа меняется обратно пропорционально изменению объема газа в степени 1,4.

Но подобный расчет справедлив только тогда, когда нет утечек воздуха, а тепло не передается окружающими стенками. За счет того, что все это есть в реальной жизни, то и подобное соотношение справедливо (1,2 – 1,3 раза). Существует эмпирическая формула, которая связывает степень сжатия и компрессия: Е = (P+3,9)/1.55, где Р – это измеренное давление, а Е – это степень сжатия.

Измеряют компрессию для того, чтобы оценить состояние двигателя и степень износа цилиндропоршневой группы. Чем меньше уровень компрессии, тем больше изношены клапаны и цилиндропоршневая группа. Если показатели слишком низкие (меньше 10 атм. в случае нетурбированного мотора, который работает на бензине), то можно говорить о том, что мотор находится в плачевном состоянии. Также об износе мотора может говорить и отличие в уровнях компрессии в разных цилиндрах больше, чем на 1 атм.

Самый плохой вариант – это наличие и первого, и второго «звоночков». В этом случае нужно обращаться к специалистам для проведения капитального ремонта «начинки» автомобиля.

Померять компрессию можно таким образом: двигатель нужно прогреть, потом выкрутить свечи, нажать на педаль газа, от чего стартер будет прокручивать двигатель, пока давление не станет стабильным.

Прогревать двигатель нужно для того, чтобы коленчатый вал вращался с достаточной частотой, а аккумуляторная батарея была разряженной. Чем выше будет частота вращения коленчатого вала, тем меньшим будет время контакта сжимаемых газов и стенок цилиндра, то есть компрессия будет выше. Именно поэтому и стартер, и АКБ должны быть исправными.

С помощью компрессии можно определить и то место, где мотор наиболее изношен. Это возможно за счет того, что давление газов падает из-за негерметичности клапанов и колец. Чтобы конкретизировать место утечки газа («виноваты» клапаны или кольца), нужно залить в цилиндр 10 – 30 г моторного масла, после чего нужно снова померять компрессию. За счет своей вязкой структуры, масло на определенное время герметизирует замки колец и щель между стенкой цилиндра и поршнем, то есть места, где «уходит» наибольшее количество газа.

Если показатели компрессометра не меняются, то неисправны клапаны, а если повысятся – то причиной всему изношенные кольца.

Многие начинающие автомобилисты, которые не так давно приобрели свое транспортное средство, стараются вникнуть в особенности его устройства. В частности, полезно понять, что находится под капотом. И особый интерес в этом плане вызывает двигатель. Это крайне сложный механизм, состоящий из различных деталей. Поэтому разбираться в этом деле стоит хотя бы для того, чтобы самостоятельно устранить ряд неисправностей. В то же время, неопытные автолюбители не способны в полной мере понять, чем отличаются компрессия и степень сжатия. А разница есть, ведь каждый из этих терминов соответствует своему предназначению.

Компрессия и степень сжатия — одно и то же: сказка первая

Нет, не так! Компрессия — это давление в цилиндре, степень сжатия — безразмерный параметр, описывающий геометрические параметры цилиндра: это отношение полного объема цилиндра к объему камеры сжатия (камера сжатия — это объем пространства над поршнем при его положении в ВМТ (еще он называется объемом конца сжатия — это то же самое). Называть ее камерой сгорания некорректно, поскольку сгорание топлива происходит во всем объеме цилиндра.) Компрессия от степени сжатия зависит, а степень сжатия от компрессии — нет! Компрессия зависит еще от кучи параметров: давления начала сжатия, регулировки фаз газораспределения, температуры, при которой проводится замер, протечек из камеры сгорания. А протечки определяются изношенностью колец и цилиндров.

«Компрессия» — то максимальное давление, которое мы измеряем в цилиндре при выключенном зажигании.

Эффект и типичные соотношения

Желательна высокая степень сжатия, поскольку она позволяет двигателю извлекать больше механической энергии из данной массы топливовоздушной смеси из-за его более высокого теплового КПД . Это происходит потому, что двигатели внутреннего сгорания являются тепловыми двигателями , и более высокая степень сжатия позволяет достичь той же температуры сгорания с меньшим количеством топлива, обеспечивая при этом более длительный цикл расширения, создавая большую выходную механическую мощность и снижая температуру выхлопных газов.

Бензиновые двигатели

В бензиновых (бензиновых) двигателях, используемых в легковых автомобилях в течение последних 20 лет, степень сжатия обычно составляет от 8∶1 до 12∶1. Некоторые серийные двигатели использовали более высокую степень сжатия, в том числе:

  • Автомобили 1955–1972 гг., Предназначенные для работы на высокооктановом этилированном бензине , обеспечивающем степень сжатия до 13∶1.
  • Некоторые двигатели Mazda SkyActiv, выпускаемые с 2012 года, имеют степень сжатия до 14∶1. В двигателе SkyActiv эта степень сжатия достигается с помощью обычного неэтилированного бензина (95 RON в Соединенном Королевстве) за счет улучшенной очистки выхлопных газов (что обеспечивает как можно более низкую температуру цилиндра перед тактом впуска) в дополнение к прямому впрыску.
  • Двигатель Toyota Dynamic Force имеет степень сжатия до 14∶1.
  • Ferrari 458 Speciale 2014 года также имеет степень сжатия 14∶1.

Когда используется принудительная индукция (например, турбокомпрессор или нагнетатель ), степень сжатия часто ниже, чем у двигателей без наддува . Это происходит из-за того, что турбокомпрессор / нагнетатель уже сжал воздух перед его поступлением в цилиндры. Двигатели, использующие через обычно имеют более низкое давление наддува и / или степень сжатия, чем двигатели с поскольку впрыск топлива через порт вызывает совместный нагрев смеси воздуха и топлива, что приводит к детонации. И наоборот, двигатели с прямым впрыском могут работать с более высоким наддувом, потому что нагретый воздух не взорвется без топлива.

Более высокая степень сжатия может сделать бензиновые двигатели подверженными детонации (также известной как «детонация», «преждевременное зажигание» или «стук»), если используется топливо с более низким октановым числом. Это может снизить эффективность или повредить двигатель, если отсутствуют датчики детонации, изменяющие угол опережения зажигания.

Дизельные двигатели

Дизельные двигатели используют более высокие степени сжатия, чем бензиновые двигатели, потому что отсутствие свечи зажигания означает, что степень сжатия должна повышать температуру воздуха в цилиндре в достаточной степени для воспламенения дизеля с использованием воспламенения от сжатия . Степень сжатия часто составляет от 14 ± 1 до 23 ± 1 для дизельных двигателей с прямым впрыском и от 18 ± 1 до 23 ± 1 для дизельных двигателей с непрямым впрыском .

Другое топливо

Степень сжатия может быть выше в двигателях, работающих исключительно на сжиженном нефтяном газе (LPG или «пропановый автогаз») или на сжатом природном газе из-за более высокого октанового числа этих топлив.

В керосиновых двигателях обычно используется степень сжатия 6,5 или ниже. Бензиновый двигатель парафина версия Фергюсон TE20 трактора имела степень сжатия 4.5:1 для работы на тракторе испарения масла с октановым числом от 55 до 70 лет .

Двигатели для автоспорта

Двигатели для автоспорта часто работают на высокооктановом бензине и поэтому могут использовать более высокую степень сжатия. Например, двигатели для гонок на мотоциклах могут использовать степень сжатия до 14,7∶1, и обычно встречаются мотоциклы со степенью сжатия выше 12,0∶1, рассчитанные на топливо с октановым числом 86 или 87.

Этанол и метанол могут иметь значительно более высокие степени сжатия, чем бензин. Гоночные двигатели, работающие на метаноле и этаноле, часто имеют степень сжатия от 14∶1 до 16∶1.

Увеличение степени сжатия

Известно, что степень сжатия, помимо других факторов, напрямую влияет на мощность мотора. Если форсирование двигателя при помощи расточки цилиндров приводит к повышению расхода топлива, то данная процедура не влияет на эту характеристику. Причина тому – объем двигателя остается прежним (подробней о том, что это такое, читайте здесь), но при этом топлива расходуется немного меньше.

Некоторые автомобилисты задумываются о проведении этой процедуры, чтобы увеличить компрессию без изменения количества потребляемого топлива. Если расход увеличился, это в первую очередь свидетельствует о том, что в двигателе или системе подачи топлива происходят какие-то сбои. Повышение степени сжатия в этом случае может не только ничего не поменять, а наоборот – спровоцировать некоторые поломки.

Если упала компрессия, то эта неполадка может свидетельствовать о прогорании клапанов, поломке уплотнительных колец и др. Подробней о том, как замеры компрессии позволяют определить некоторые неисправности мотора, рассказывается в отдельной статье. По этой причине, прежде чем начинать форсирование мотора, нужно устранить возникшие неисправности.

Вот что дает увеличенное сжатие воздушно-топливной смеси в исправном двигателе:

  1. Повысить экономичность мотора (отдача двс повышается, но расход не меняется);
  2. Мощность силового агрегата увеличивается за счет более сильных толчков, которые провоцирует сгорание ВТС;
  3. Повышение компрессии.

Помимо плюсов у данной процедуры есть и свои побочные эффекты. Так, после форсирования нужно будет использовать топливо с повышенным октановым числом (подробно об этом значении читайте здесь). Если заливать в бак тот же бензин, что использовался ранее, существует риск образования детонации. Это когда горючая смесь не воспламеняется в момент подачи искры, а взрывается.

Бесконтрольное и резкое сгорание ВТС будет влиять на состояние поршней, клапанов и всего кривошипно-шатунного механизма. Из-за этого рабочий ресурс силового агрегата резко сокращается. Такой эффект критичен для любого двигателя, независимо от того, это двухтактный или четырехтактный агрегат.

Подобной «болячкой» страдает не только бензиновый двигатель, прошедший форсировку при помощи рассматриваемого метода, но также и дизельный агрегат. Чтобы повышение степени сжатия не сказывалось на работе мотора, помимо его переделки нужно будет впоследствии заливать в бак бензинового автомобиля топливо, скажем, не 92-й, а уже 95-й или даже 98-й марки.

Прежде чем приступать к модернизации агрегата, следует взвесить, действительно ли она будет экономически оправдана. Что касается машин, оснащенных газовыми установками (об особенностях установки ГБО читайте отдельно), то в них детонация практически никогда не происходит. Причиной тому – газ имеет высокое ОЧ. Этот показатель у такого топлива 108, благодаря чему в моторах, работающих на газу, можно без страха проводить повышения порога сжатия.

Основные методы форсирования силовой установки

Улучшение показателей мотора за счёт форсирования набирает все большую популярность. Существует целый ряд фирм, проводящих доводку и модернизацию агрегатов сразу, после их выхода с конвейера завода. Форсирование ДВС, как правило, происходит за счёт каких-то изменений в его конструкции, к ним можно отнести:

Изменения в головке блока цилиндров

Доработка головки блока цилиндров играет одну из важнейших ролей в модернизации. Правильно проведённая работа способна добавить 20% мощности установке. Форсированный двигатель не только демонстрирует улучшенные характеристики, а так же имеет повышенный ресурс за счёт большего наполнения цилиндров смесью, правильного и полноценного сгорания топлива, и отвода продуктов сгорания.

Поскольку камера сгорания является местом, в котором протекают основные рабочие процессы силовой установки, именно на её улучшение направлена основная работа. От камеры сгорания напрямую зависят такие процессы, как смесеобразование, продувка, воспламенение, горение. Что бы улучшить их, камеру полируют, увеличивают впускные и выпускные каналы, проходные сечения головки блока цилиндров, улучшают клапана, коллекторы и др.

Замена распределительного вала

Положительным моментом в применении такой модернизации является отсутствие необходимости изменять рабочий объём установки. Такое конструктивное решение позволяет сдвинуть диапазон мощности относительно условий эксплуатации агрегата. Таким образом, на определённых режимах работы мотора, будут изменены фазы газораспределения, и двигатель получит прирост мощности.

Увеличение объёма силовой установки

Данный метод форсирования является самым простым и популярным. Для его осуществления можно прибегнуть к нескольким действиям: увеличить диаметр цилиндров, или установить коленчатый вал, имеющий больший ход.

Увеличение степени сжатия

Метод позволяет значительно повысить коэффициент полезного действия силовой установки. Степень сжатия напрямую зависит от задержки закрытия впускного клапана, а так же от угла открытия дроссельной заслонки. Процесс достигается при помощи установки специального распределительного вала, который позволяет повлиять на фазы газораспределения, расширив их.

Способ обеспечивает прирост мощности агрегата во всем диапазоне оборотов. Кроме того, требует применения другого сорта топлива, с увеличенным показателем октанового числа.

Увеличение наполнения цилиндров

Принцип метода: снизить аэродинамическое сопротивление во впускной и выпускной системе, в каналах головки блока цилиндров. Для увеличения коэффициента наполнения цилиндров выполняются работы по полной замене впуска и выпуска или их модификации.

Кроме того, параллельно устанавливается раздельный выпускной коллектор, прямоточная выхлопная система и воздушный фильтр нулевого сопротивления. Как пример, ВАЗ 2108 с коэффициентом 0,75 после доработки имеет коэффициент 1,0 и выше.

Недостатком метода является его значительная стоимость по отношению к прибавке мощности, полученной на выходе.

Уменьшение механических потерь

К механическим потерям при работе силовой установки можно отнести: потери на трение, насосные потери, потери на привод механизмов мотора.

Самое сильное трение происходит в цилиндрах двигателя внутреннего сгорания. Для уменьшения силы одними из способов является установка поршней с меньшей площадью юбки. Кроме того, уменьшают ход поршня, подгоняют поршни и детали кривошипно-шатунного механизма по весу, производят балансировку. К насосным потерям относят потери мощности на всасывание двигателем воздуха.

Приводы газораспределительного механизма, генератора, помпы и др. так же требуют энергии. В идеале при форсировании силовой установки все их необходимо уравновесить, с целью уменьшения и равномерного распределения мощности. Иногда для этого достаточно воспользоваться изменением передаточного отношения.

Установка сухого картера так же положительно сказывается на экономии мощности. При движении транспортного средства, в обычном картере происходит колебание излишков масла, которые, попадая на коленчатый вал и другие механизмы, вызывают их дисбаланс. Как следствие, потери мощности на противостояние ему. Сухой картер минимизирует эти потери.

https://youtube.com/watch?v=K_lDfewbfjs

Низкая компрессия в двигателе

Сразу отметим, как высокая, так и низкая компрессия является плохим показателем для мотора. Что касается низкой компрессии, в этом случае двигатель плохо заводится на холодную, дымит, не тянет, заметно перерасходует масло, топливо и т.д. В бензиновых моторах при попытках запуска агрегата с низкой компрессией дополнительно заливает свечи, что еще больше осложняет ситуацию.

Обычно низкая компрессия фактически является негерметичностью камеры сгорания и увеличением зазоров между элементами ЦПГ. Если точнее, речь идет о выработке стенок цилиндров, залегании или разрушении компрессионных и маслосъемных колец, дефектах поршня, повреждениях прокладки ГБЦ, прогаре клапанов и т.д.

Как правило, на снижение компрессии в цилиндрах указывает высокий расход масла, сизый масляный дым из выхлопной трубы, потеря мощности и ряд других признаков. Наблюдаются серьезные проблемы при попытке завести холодный двигатель, так как до прогрева зазоры между деталями сильно увеличены.

В большинстве случаев двигатель в подобной ситуации нужно разбирать, после чего осуществляется расточка или гильзовка блока цилиндров, меняются кольца или поршни вместе с кольцами и т.д. Если мотор сильно изношен, тогда  зачастую абсолютно уместно говорить о полном капитальном ремонте двигателя.

Рекомендуем также почитать статью о присадках в двигатель, чтобы мотор не расходовал масло и не дымил. Из этой статьи вы узнаете о типах данных присадок, особенностях их работы, а также преимуществах и недостатках использования таких продуктов.

Что касается различных восстановительных присадок для увеличения компрессии, такое решение весьма спорное. Не будем отрицать, в некоторых случаях раскоксовка двигателя, переход на более вязкую смазку (например, с 5W30 на 10W40) и последующее использование присадок в масло для повышения компрессии позволяет поднять показатель, снизить расход смазки и далее эксплуатировать агрегат не один десяток тысяч километров. Однако такие способы срабатывают далеко не всегда.

Если агрегат сильно изношен, тогда зачастую использование густого масла и присадок можно считать всего лишь временной мерой, которая позволит далее эксплуатировать автомобиль относительно непродолжительное время.

Затем все равно потребуется делать капремонт, причем использование присадок в масло для некоторых ДВС также не проходит без дополнительных негативных последствий. Другими словами, иногда лучше сразу начать ремонтировать мотор, чем оттягивать ремонт, заливая в агрегат не рекомендованное производителем масло, а также различные добавки и присадки.

Лучшие методы форсирования двигателя из опыта автолюбителей

Фильтруем с умом

«Автошноркель повысит сопротивление потоку, поэтому выбирать этот элемент необходимо с учетом проходного сечения и длины. Не нужно устанавливать на него фильтр с малой пропускной способностью.

Сегодня в продаже можно найти фильтры с минимальным сопротивлением потоку. Наиболее популярный K&N, который проходит 1 000 000 миль. Однако у него есть минусы: необходимо постоянно очищать от загрязнений, высушивать и наносить пропитку. Еще один метод автотюнинга — установить фильтр увеличенного размера от грузовой машины, к примеру».

Работаем с турбиной

«Автотурбина — это насос прямого вытеснения. Главный минус данного метода форсирования двигателя — узкий диапазон работы с высоким КПД. Производители автомобилей устраняют этот недостаток разными способами. К примеру, Ford использует турбину, на которой можно менять угол лопаток. Однако в большинстве случаев на заводах устанавливаются автотурбины со стандартными параметрами, поэтому на многих ДВС наблюдается турбояма.

Что делать? Можно использовать механический нагнетатель, который в редких случаях устанавливается на заводские двигатели (даже дизельные). Механический нагнетатель достаточно часто используется в автотюнинге. Например, с его помощью можно выровнять параметры наддува. Однако будьте готовы к серьезным финансовым расходам. Если вам нужно тюнинговать двигатель, чтобы он тянул на низких оборотах, то лучше приобрести турбину, работающую «на низах». К сожалению, на высоких оборотах мотор будет терять в мощности. В некоторых ситуациях при необходимости наддув можно вывести вверх».

Осторожнее с наддувом

«Эффективный метод форсирования двигателя — повысить давление наддува. Однако в этом случае мотор, как бензиновый, так и дизельный, может детонировать. Кроме того, постоянно повышать давление невозможно.

Необходимо соблюдать границы степени сжатия, которые рассчитаны для конкретного ДВС. В противном случае поршни и форкамеры могут прогореть

Поэтому данный метод форсирования двигателя следует использовать с осторожностью. Если увеличить диаметр клапанов, продувка камер станет лучше

На спортивных авто подгоняют коллекторы, а также спиливают выступающую в канал часть втулки клапана. Это также способствует лучшей продувке. Кстати, ресурс мотора после такого тюнинга останется неизменным».

Настроенный выхлоп – настроенный мотор

«Проверенный метод форсирования двигателя — настройка выхлопной системы. Такой тюнинг подойдет как для моторов с наддувом, так и для атмосферных ДВС. Выхлоп создает сопротивление потоку. Чтобы сделать сопротивление меньше, следует укоротить длину либо проходное сечение. В результате мотор станет мощнее. В продаже можно найти специальные устройства, к примеру, позволяющие дистанционно открывать клапан на открытие выхлопа наружу сразу после двигателя. Необходимо также правильно настроить мотор. Чтобы положение распределительного вала на машине было точным, используются разрезные шестерни».

Топливная система и впрыск – идем на взлет

«Заводские ДВС имеют такую настройку, чтобы экономить топливо и не загрязнять окружающую среду. Однако когда вы хотите сделать мотор мощнее, следует усовершенствовать топливную систему. Дизельный автомобиль должен чуть-чуть коптить. Только так будет наилучшее соотношение топливной смеси и воздуха.

Системы опережения впрыска также должны работать правильно. Могут быть переходные режимы, однако сегодня за это отвечает электронный блок управления. Провести корректировку можно не на каждом блоке. Поможет перепрошивка ЭБУ».

Цикл Миллера-Аткинсона

Большую известность цикл Миллера-Аткинсона получил благодаря рекламным брошюрам компании Mazda. Маркетологи гордо заявляют, что инженерам удалось поднять степень сжатия двигателей модели Skyactive до 14 единиц. На самом деле речь идет о геометрической степени сжатия, а не о фактической.

Трюк заключается в том, что во время поднятия поршня на такте сжатия выпускные клапаны еще долгое время открытые, из-за чего часть свежего воздушного заряда выталкивается в выхлопной тракт. Поэтому фактическая степень близка к стандартным для бензиновых моторов 12 единицам. Увеличение термического КПД при этом достигается за счет более эффективного использования энергии расширяющихся газов на такте рабочего хода. За счет большего хода (увеличен диаметр кривошипа) газы дольше давят на поршень. Поэтому при сгорании одной и той же доли топлива, в сравнении с обычным циклом Отто, на коленчатый вал передается больший крутящий момент. Технология позволяет в режимах малых и средних нагрузок значительно уменьшить расход топлива и количество вредных выбросов.

Краткие выводы

Как видим, даже маломощный автомобиль можно заставить работать, как спортивный. Собственно говоря, подобный тюнинг имеет смысл сравнивать с допингом, используемым в профессиональном спорте. Но здесь прямого запрета нет. Максимальные санкции – лишение гарантии, что после окончания гарантийного срока неактуально. Большинство актуальных способов дают относительно небольшой рост мощности, поэтому, если не использовать наиболее радикальные методы, имеет смысл задействовать комбинацию из нескольких менее существенных.

Но в любом случае за увеличение отдачи мотора придётся чем-то расплачиваться. В большинстве случаев это – повышение расхода топлива.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Мастер Юрий Меркулов
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Основные способы увеличения мощности двигателя автомобиля

• Пример

Воспользуемся воображаемым примером для уяснения деталей.

Представим себе двигатель со степенью сжатия 2,0:1 и, просто ради аргумента скажем, что общий объём (нерабочий объём) одного цилиндра, когда поршень находится в НМТ (нижней мертвой точке), составляет 3.278 см3. Это объём, создаваемый поршнем при одном такте плюс объём камеры сгорания над поршнем, находящимся в положении ВМП (верхней мертвой точке). vk/com/autobap Так как степень сжатия составляет 2,0:1, то объём над поршнем, находящимся в ВМТ должен составлять половину от общего объёма цилиндра или 1.639 см3, (т. е. 1.639 см3 «выбранного« объёма плюс 1.639 см3 камеры сгорания равны 3.278 см3 общего объёма цилиндра). Даже при 3.278 см3 во всём цилиндре двигатель может втянуть только 1.639 см3 свежей рабочей смеси, т. к. имеется давление в коллекторе у впускного канала (в случае с VE, равной 100%) и только вытесненный объём поршня может работать для втягивания воздуха и топлива. Остальные 1.639 см3 будут заполнены выхлопными газами от последнего цикла сгорания.

Добавим теперь к воображаемому двигателю нагнетатель (компрессор) и отрегулируем давление так, что он будет подавать 3.278 см3 топливовоздушной смеси в цилиндр вместо исходных 1.639 см3, которые двигатель мог «вдохнуть« в прежнем состоянии. С нашим нагнетателем в цилиндре будет находиться 3.278 , см3 свежей смеси в конце и не будет остаточных выхлопных газов. Это существенно улучшит мощность. Но что произойдет, если в безрассудных поисках дополнительной мощности увеличить степень сжатия до 3,0:1, уменьшив объём камеры сгорания над поршнем в ВМТ со1.639 см3 до 1.092 см3? Когда поршень находится в конце такта впуска, общий объём цилиндра будет теперь только 2.731 см3. Если не изменять давление наддува, то оно может «вдавить« только 2.731 см3 топливовоздушной смеси в цилиндр. Это уменьшит объём смеси на 547 см3 или примерно на 17%. Двигатель втягивает менее воспламененную смесь, объёмная эффективность уменьшается (на 17%) и мощность снижается. Справедливо то, что 2.731 см3 подаваемой смеси сгорает с более высокой эффективностью благодаря увеличению степени сжатия, но улучшение степени сжатия покрывает только 5% из. 17% потерь мощности.

Увеличение крутящего момента двигателя – приемы модернизации

Такая величина, как крутящий момент, совсем мало зависит от того, насколько быстро вращается коленвал, так как он определяется объемом мотора и давлением в цилиндре. Существует несколько способов, с помощью которых его можно увеличить:

Чип тюнинг двигателя

Первый вариант тюнинга заключается в оптимизации всего, с чем работает агрегат. Система выпуска и заводские распределительные валы заменяются аналогами, с более высокой производительностью. Далее стоит заменить воздушный фильтр, дроссельную заслонку. Этот подход относительно прост и не затратный, однако можно рассчитывать на прирост мощности не более, чем на 20-30%.

Второй путь – модификация двигателя. Здесь предстоит несколько изменить характеристики двигателя. Данный способ идеален для инжекторных авто. Его суть в программном изменении чипа, подающего сигналы основным устройствам транспортного средства

Однако действовать нужно предельно осторожно, тщательно подбирая изменения, которые будут внесены

В результате такой сложной модификации, крутящий момент авто может увеличиться на 5-20%. На расходе топлива это сильно не отобразится, а в некоторых случаях он даже может снизиться. Помимо этого, достаточно высокие результаты даст прошивка.

Распределительный вал

Когда есть возможность, можно заменить обычный распредвал на спортивный, прирост производительности сразу даст изменение программы, которая управляет подачей рабочей смеси. Спортивный распределительный вал отличается от стокового профилем кулачков, а соответственно – фазами газораспределения. Это значит, что, таким образом можно добиться эффективной подачи рабочей смеси. Чем ее больше – тем больше давление на поршень. Такие действия способствуют к увеличению крутящего момента.

Доработка головки блока цилиндра

Значительный прирост производительности даст турбирование агрегата. В не модифицированном моторе сгораемая смесь, которая впускается головкой блока цилиндра, эффективно всасывается тактом. В случае модификации, смесь подается непосредственно турбиной, что позволяет существенно увеличить объем сгораемого газа, а значит и увеличить мощность.

Рабочий объем

Действенный метод увеличить крутящий момент – увеличить рабочий объем. Для этого шатуны, поршни и коленчатый вал меняются на аналоги, только с лучшими характеристиками. Такая модификация несколько увеличит крутящий момент, но только между низкими и средними оборотами агрегата. Это значит, что для получения необходимой мощности теперь не придется раскручивать мотор до максимально высоких оборотов, что положительно скажется на рабочих характеристиках.

Камера сгорания

Прирост мощности мотора даст возможность уменьшить камеру сгорания, поскольку уменьшение объема незначительно увеличит степень сжатия. Для того чтобы уменьшить камеру сгорания, вероятнее всего, придется фрезеровать головки блока цилиндра. Помимо этого, можно попробовать подобрать поршень такого размера, чтобы он занимал больший объем в верхней части. Однако стоит учитывать, что в 16-от клапанных моторах поршень, как правило, вплотную приближен к клапанам, поэтому заменить его поршнем иной формы не получится.

Поршни

Еще один способ увеличит крутящий момент – поршни двигателя заменить на более легкие аналоги. Это поможет уменьшить нагрузку на коренные шейки и коленчатый вал. Легкие поршни не так инертны, а значит – они намного легче смогут останавливаться в «мертвых точках».

Так же можно поставить поршни большего диаметра. Для этого придется расточить блоки цилиндров, однако это так же негативно скажется на динамических свойствах мотора: может уменьшиться ресурс двигателя. Прибегать к данному способу стоит в исключительных случаях.

Степень сжатия и ее влияние на параметры конца сжатия

Процесс сжатия в цилиндре дизеля начинается лишь после закрытия газораспределительных органов. В 4-тактном двигателе — после закрытия впускного клапана, в 2-тактном — после закрытия всех продувочных и выпускных органов.

В 4-тактном двигателе впускной клапан закрывается после прохождения поршнем НМТ. Однако влияние этого запаздывания закрытия клапана на параметры процесса сжатия в большинстве двигателей незначительно. Поэтому в расчетах рабочего процесса 4-тактных дизелей обычно пользуются номинальным значением степени сжатия, равным:

ε = Va /Vc = (Vs +Vc )/Vc

  • Va — объем цилиндра в момент начала сжатия;
  • Vs — рабочий объем цилиндра;
  • Vc — объем камеры сжатия.

В 2-тактных двигателях пользуются двумя понятиями: действительной степенью сжатия и степенью сжатия, отнесенной к полному ходу поршня. Действительная степень сжатия равна:

ε = Va /Vc = (Vc +Vs(1-ψs))/Vc

где Ψs — доля потерянного хода поршня от НМТ до момента закрытия выпускного (продувочного) тракта.

Степень сжатия, отнесенная к полному ходу поршня (иногда ее называют “условная степень сжатия”), может быть выражена следующим образом:

εп = (Vc +Vs)/Vc = 1+[(Va -Vc)/(1-ψs)Vc]

Параметры конца сжатия определяются из выражений:

Pc = Pa εn1 = Pa ε (Tc /Ta)

Как видно, параметры Pс и Tс возрастают с повышением Pа, Та, и n1. Значения степени сжатия (для 2-тактных ДВС имеется в виду действительная величина) находятся в пределах:

  • ε = 10 — 13 — у малооборотных дизелей;
  • ε = 8,5 — 14,5 — у среднеоборотных дизелей;
  • ε = 15 — 19 — у высокооборотных дизелей.

Нижний предел степени сжатия выбирается из условия возможности запуска холодного двигателя. Как известно, средняя температура самовоспламенения топлива составляет примерно 280° С (553° К). Для номинального режима выбирается степень сжатия, обеспечивающая минимальную температуру конца сжатия Tс min = 700-800° К.Дополнительный „запас“ температуры Tс в 150-250° К необходим с учетом того, что при пуске холодного двигателя температура стенок цилиндра низкая, показатель n1 уменьшается до 1,2 — 1,25, наблюдается повышенный пропуск заряда через поршневые кольца. В результате параметры Pс и Tс имеют более низкие значения по сравнению с номинальным режимом.

С понижением степени сжатия двигателя ухудшаются не только его пусковые качества, но и снижается термический КПД. Несмотря на это, при форсировании двигателей наддувом приходится снижать ε, чтобы обеспечить механическую прочность двигателя — снизить давление сжатия Pс и соответственно — максимальное давление в цилиндре Pz. Давление сжатия обычно находится в пределах:

  • Pс = 3.0 — 5.0 мПа — у двигателей без наддува;
  • Pс = 4.0 — 10.0 мПа — у двигателей с наддувом.

Более высокие значения ε у высокооборотных дизелей объясняется их меньшими линейными размерами и соответственно более интенсивным теплоотводом. Верхние значения ε относятся к двигателям с разделенными камерами сгорания, где относительная поверхность теплоотвода больше. Чрезмерное повышение ε, несмотря на некоторое повышение термического КПД, нецелесообразно, так как приводит к высоким Pz, увеличению потерь на трение в двигателе и к утяжелению конструкции для обеспечения механической прочности.

Чем выше компрессия, тем лучше: сказка четвертая

Частенько от апологетов разных присадок приходится слышать, как подпрыгнула компрессия после очередной обработки мотора. Рост до 15 бар, до 17 бар! Но надо иметь в виду, что в нормальном состоянии, даже восстановив зазоры до состояния нового двигателя, компрессию выше штатной не получить.

Откуда же цифры? Обычно на разобранном двигателе видно, что камера сгорания после обработки заросла непонятно чем и, как следствие, уменьшился объем камеры сжатия. Но эти отложения нарушают теплоотвод от камеры сгорания. Отсюда детонация, калильное зажигание и прочее. Так что небывалому росту компрессии не радоваться надо, а наоборот.

Изменение удельного расхода топлива при фиксированных оборотах (2500 об/мин) в двух вариантах двигателя — базовом и с кольцами, в которых увеличены зазоры. Компрессия упала, но по расходу это заметно только при малых нагрузках.

Компрессия: что это?

Компрессия – это давление газов в цилиндрах двигателя в конце такта сжатия во время вращения вала стартером при отключенном зажигания. Именно во время вращения стартером нужно измерять компрессию, так как во время работы мотора давление меняется. Этот параметр является физической величиной, а для ее измерения используют специальный прибор – компрессометр.

В теории компрессия и степень сжатия равны между собой, а вот на практике ситуация иная: степень сжатия почти всегда меньше, чем компрессия.

На это есть свои причины. Эти величины будут равны между собой, если газ в цилиндрах сжимается бесконечно долго, изометрически. В этом случае энергия, которая выделяется в процессе сжатия газа, полностью поглощалась бы поршнем, стенками цилиндров, головкой блока и другими частями мотора, благодаря чему не менялся бы тепловой баланс. Газ, который сжимается, отдает тепло и не давит на манометр с большей силой, нежели расчетная.

На практике же все абсолютно по-другому. В реальной жизни процесс сжатия газа происходит на фоне роста температуры, то есть процесс адиабатный. Если говорить простыми словами, то все тепло, которое выделяет сжатый газ, просто не успевает поглотиться стенками цилиндров, а за счет остатка и в цилиндре создается повышенное давление.

В старых моторах компрессия будет ниже, чем у новых. Это происходит за счет герметичности: новый мотор более герметичен, нежели старый, поэтому и замки колец и остальные места цилиндров не будут пропускать достаточно большое количество тепла, чтобы компрессия существенно упала.

Если двигатель работает исправно, то зачастую компрессия больше расчетной степени сжатия в 1,2 – 1,3 раза. В теории давление газа меняется обратно пропорционально изменению объема газа в степени 1,4.

Но подобный расчет справедлив только тогда, когда нет утечек воздуха, а тепло не передается окружающими стенками. За счет того, что все это есть в реальной жизни, то и подобное соотношение справедливо (1,2 – 1,3 раза). Существует эмпирическая формула, которая связывает степень сжатия и компрессия: Е = (P+3,9)/1.55, где Р – это измеренное давление, а Е – это степень сжатия.

Измеряют компрессию для того, чтобы оценить состояние двигателя и степень износа цилиндропоршневой группы. Чем меньше уровень компрессии, тем больше изношены клапаны и цилиндропоршневая группа. Если показатели слишком низкие (меньше 10 атм. в случае нетурбированного мотора, который работает на бензине), то можно говорить о том, что мотор находится в плачевном состоянии. Также об износе мотора может говорить и отличие в уровнях компрессии в разных цилиндрах больше, чем на 1 атм.

Самый плохой вариант – это наличие и первого, и второго «звоночков». В этом случае нужно обращаться к специалистам для проведения капитального ремонта «начинки» автомобиля.

Померять компрессию можно таким образом: двигатель нужно прогреть, потом выкрутить свечи, нажать на педаль газа, от чего стартер будет прокручивать двигатель, пока давление не станет стабильным.

Прогревать двигатель нужно для того, чтобы коленчатый вал вращался с достаточной частотой, а аккумуляторная батарея была разряженной. Чем выше будет частота вращения коленчатого вала, тем меньшим будет время контакта сжимаемых газов и стенок цилиндра, то есть компрессия будет выше. Именно поэтому и стартер, и АКБ должны быть исправными.

С помощью компрессии можно определить и то место, где мотор наиболее изношен. Это возможно за счет того, что давление газов падает из-за негерметичности клапанов и колец. Чтобы конкретизировать место утечки газа («виноваты» клапаны или кольца), нужно залить в цилиндр 10 – 30 г моторного масла, после чего нужно снова померять компрессию. За счет своей вязкой структуры, масло на определенное время герметизирует замки колец и щель между стенкой цилиндра и поршнем, то есть места, где «уходит» наибольшее количество газа.

Если показатели компрессометра не меняются, то неисправны клапаны, а если повысятся – то причиной всему изношенные кольца.

Многие начинающие автомобилисты, которые не так давно приобрели свое транспортное средство, стараются вникнуть в особенности его устройства. В частности, полезно понять, что находится под капотом. И особый интерес в этом плане вызывает двигатель. Это крайне сложный механизм, состоящий из различных деталей. Поэтому разбираться в этом деле стоит хотя бы для того, чтобы самостоятельно устранить ряд неисправностей. В то же время, неопытные автолюбители не способны в полной мере понять, чем отличаются компрессия и степень сжатия. А разница есть, ведь каждый из этих терминов соответствует своему предназначению.

Компрессия и степень сжатия — одно и то же: сказка первая

Нет, не так! Компрессия — это давление в цилиндре, степень сжатия — безразмерный параметр, описывающий геометрические параметры цилиндра: это отношение полного объема цилиндра к объему камеры сжатия (камера сжатия — это объем пространства над поршнем при его положении в ВМТ (еще он называется объемом конца сжатия — это то же самое). Называть ее камерой сгорания некорректно, поскольку сгорание топлива происходит во всем объеме цилиндра.) Компрессия от степени сжатия зависит, а степень сжатия от компрессии — нет! Компрессия зависит еще от кучи параметров: давления начала сжатия, регулировки фаз газораспределения, температуры, при которой проводится замер, протечек из камеры сгорания. А протечки определяются изношенностью колец и цилиндров.

«Компрессия» — то максимальное давление, которое мы измеряем в цилиндре при выключенном зажигании.

Эффект и типичные соотношения

Желательна высокая степень сжатия, поскольку она позволяет двигателю извлекать больше механической энергии из данной массы топливовоздушной смеси из-за его более высокого теплового КПД . Это происходит потому, что двигатели внутреннего сгорания являются тепловыми двигателями , и более высокая степень сжатия позволяет достичь той же температуры сгорания с меньшим количеством топлива, обеспечивая при этом более длительный цикл расширения, создавая большую выходную механическую мощность и снижая температуру выхлопных газов.

Бензиновые двигатели

В бензиновых (бензиновых) двигателях, используемых в легковых автомобилях в течение последних 20 лет, степень сжатия обычно составляет от 8∶1 до 12∶1. Некоторые серийные двигатели использовали более высокую степень сжатия, в том числе:

  • Автомобили 1955–1972 гг., Предназначенные для работы на высокооктановом этилированном бензине , обеспечивающем степень сжатия до 13∶1.
  • Некоторые двигатели Mazda SkyActiv, выпускаемые с 2012 года, имеют степень сжатия до 14∶1. В двигателе SkyActiv эта степень сжатия достигается с помощью обычного неэтилированного бензина (95 RON в Соединенном Королевстве) за счет улучшенной очистки выхлопных газов (что обеспечивает как можно более низкую температуру цилиндра перед тактом впуска) в дополнение к прямому впрыску.
  • Двигатель Toyota Dynamic Force имеет степень сжатия до 14∶1.
  • Ferrari 458 Speciale 2014 года также имеет степень сжатия 14∶1.

Когда используется принудительная индукция (например, турбокомпрессор или нагнетатель ), степень сжатия часто ниже, чем у двигателей без наддува . Это происходит из-за того, что турбокомпрессор / нагнетатель уже сжал воздух перед его поступлением в цилиндры. Двигатели, использующие через обычно имеют более низкое давление наддува и / или степень сжатия, чем двигатели с поскольку впрыск топлива через порт вызывает совместный нагрев смеси воздуха и топлива, что приводит к детонации. И наоборот, двигатели с прямым впрыском могут работать с более высоким наддувом, потому что нагретый воздух не взорвется без топлива.

Более высокая степень сжатия может сделать бензиновые двигатели подверженными детонации (также известной как «детонация», «преждевременное зажигание» или «стук»), если используется топливо с более низким октановым числом. Это может снизить эффективность или повредить двигатель, если отсутствуют датчики детонации, изменяющие угол опережения зажигания.

Дизельные двигатели

Дизельные двигатели используют более высокие степени сжатия, чем бензиновые двигатели, потому что отсутствие свечи зажигания означает, что степень сжатия должна повышать температуру воздуха в цилиндре в достаточной степени для воспламенения дизеля с использованием воспламенения от сжатия . Степень сжатия часто составляет от 14 ± 1 до 23 ± 1 для дизельных двигателей с прямым впрыском и от 18 ± 1 до 23 ± 1 для дизельных двигателей с непрямым впрыском .

Другое топливо

Степень сжатия может быть выше в двигателях, работающих исключительно на сжиженном нефтяном газе (LPG или «пропановый автогаз») или на сжатом природном газе из-за более высокого октанового числа этих топлив.

В керосиновых двигателях обычно используется степень сжатия 6,5 или ниже. Бензиновый двигатель парафина версия Фергюсон TE20 трактора имела степень сжатия 4.5:1 для работы на тракторе испарения масла с октановым числом от 55 до 70 лет .

Двигатели для автоспорта

Двигатели для автоспорта часто работают на высокооктановом бензине и поэтому могут использовать более высокую степень сжатия. Например, двигатели для гонок на мотоциклах могут использовать степень сжатия до 14,7∶1, и обычно встречаются мотоциклы со степенью сжатия выше 12,0∶1, рассчитанные на топливо с октановым числом 86 или 87.

Этанол и метанол могут иметь значительно более высокие степени сжатия, чем бензин. Гоночные двигатели, работающие на метаноле и этаноле, часто имеют степень сжатия от 14∶1 до 16∶1.

Увеличение степени сжатия

Известно, что степень сжатия, помимо других факторов, напрямую влияет на мощность мотора. Если форсирование двигателя при помощи расточки цилиндров приводит к повышению расхода топлива, то данная процедура не влияет на эту характеристику. Причина тому – объем двигателя остается прежним (подробней о том, что это такое, читайте здесь), но при этом топлива расходуется немного меньше.

Некоторые автомобилисты задумываются о проведении этой процедуры, чтобы увеличить компрессию без изменения количества потребляемого топлива. Если расход увеличился, это в первую очередь свидетельствует о том, что в двигателе или системе подачи топлива происходят какие-то сбои. Повышение степени сжатия в этом случае может не только ничего не поменять, а наоборот – спровоцировать некоторые поломки.

Если упала компрессия, то эта неполадка может свидетельствовать о прогорании клапанов, поломке уплотнительных колец и др. Подробней о том, как замеры компрессии позволяют определить некоторые неисправности мотора, рассказывается в отдельной статье. По этой причине, прежде чем начинать форсирование мотора, нужно устранить возникшие неисправности.

Вот что дает увеличенное сжатие воздушно-топливной смеси в исправном двигателе:

  1. Повысить экономичность мотора (отдача двс повышается, но расход не меняется);
  2. Мощность силового агрегата увеличивается за счет более сильных толчков, которые провоцирует сгорание ВТС;
  3. Повышение компрессии.

Помимо плюсов у данной процедуры есть и свои побочные эффекты. Так, после форсирования нужно будет использовать топливо с повышенным октановым числом (подробно об этом значении читайте здесь). Если заливать в бак тот же бензин, что использовался ранее, существует риск образования детонации. Это когда горючая смесь не воспламеняется в момент подачи искры, а взрывается.

Бесконтрольное и резкое сгорание ВТС будет влиять на состояние поршней, клапанов и всего кривошипно-шатунного механизма. Из-за этого рабочий ресурс силового агрегата резко сокращается. Такой эффект критичен для любого двигателя, независимо от того, это двухтактный или четырехтактный агрегат.

Подобной «болячкой» страдает не только бензиновый двигатель, прошедший форсировку при помощи рассматриваемого метода, но также и дизельный агрегат. Чтобы повышение степени сжатия не сказывалось на работе мотора, помимо его переделки нужно будет впоследствии заливать в бак бензинового автомобиля топливо, скажем, не 92-й, а уже 95-й или даже 98-й марки.

Прежде чем приступать к модернизации агрегата, следует взвесить, действительно ли она будет экономически оправдана. Что касается машин, оснащенных газовыми установками (об особенностях установки ГБО читайте отдельно), то в них детонация практически никогда не происходит. Причиной тому – газ имеет высокое ОЧ. Этот показатель у такого топлива 108, благодаря чему в моторах, работающих на газу, можно без страха проводить повышения порога сжатия.

Основные методы форсирования силовой установки

Улучшение показателей мотора за счёт форсирования набирает все большую популярность. Существует целый ряд фирм, проводящих доводку и модернизацию агрегатов сразу, после их выхода с конвейера завода. Форсирование ДВС, как правило, происходит за счёт каких-то изменений в его конструкции, к ним можно отнести:

Изменения в головке блока цилиндров

Доработка головки блока цилиндров играет одну из важнейших ролей в модернизации. Правильно проведённая работа способна добавить 20% мощности установке. Форсированный двигатель не только демонстрирует улучшенные характеристики, а так же имеет повышенный ресурс за счёт большего наполнения цилиндров смесью, правильного и полноценного сгорания топлива, и отвода продуктов сгорания.

Поскольку камера сгорания является местом, в котором протекают основные рабочие процессы силовой установки, именно на её улучшение направлена основная работа. От камеры сгорания напрямую зависят такие процессы, как смесеобразование, продувка, воспламенение, горение. Что бы улучшить их, камеру полируют, увеличивают впускные и выпускные каналы, проходные сечения головки блока цилиндров, улучшают клапана, коллекторы и др.

Замена распределительного вала

Положительным моментом в применении такой модернизации является отсутствие необходимости изменять рабочий объём установки. Такое конструктивное решение позволяет сдвинуть диапазон мощности относительно условий эксплуатации агрегата. Таким образом, на определённых режимах работы мотора, будут изменены фазы газораспределения, и двигатель получит прирост мощности.

Увеличение объёма силовой установки

Данный метод форсирования является самым простым и популярным. Для его осуществления можно прибегнуть к нескольким действиям: увеличить диаметр цилиндров, или установить коленчатый вал, имеющий больший ход.

Увеличение степени сжатия

Метод позволяет значительно повысить коэффициент полезного действия силовой установки. Степень сжатия напрямую зависит от задержки закрытия впускного клапана, а так же от угла открытия дроссельной заслонки. Процесс достигается при помощи установки специального распределительного вала, который позволяет повлиять на фазы газораспределения, расширив их.

Способ обеспечивает прирост мощности агрегата во всем диапазоне оборотов. Кроме того, требует применения другого сорта топлива, с увеличенным показателем октанового числа.

Увеличение наполнения цилиндров

Принцип метода: снизить аэродинамическое сопротивление во впускной и выпускной системе, в каналах головки блока цилиндров. Для увеличения коэффициента наполнения цилиндров выполняются работы по полной замене впуска и выпуска или их модификации.

Кроме того, параллельно устанавливается раздельный выпускной коллектор, прямоточная выхлопная система и воздушный фильтр нулевого сопротивления. Как пример, ВАЗ 2108 с коэффициентом 0,75 после доработки имеет коэффициент 1,0 и выше.

Недостатком метода является его значительная стоимость по отношению к прибавке мощности, полученной на выходе.

Уменьшение механических потерь

К механическим потерям при работе силовой установки можно отнести: потери на трение, насосные потери, потери на привод механизмов мотора.

Самое сильное трение происходит в цилиндрах двигателя внутреннего сгорания. Для уменьшения силы одними из способов является установка поршней с меньшей площадью юбки. Кроме того, уменьшают ход поршня, подгоняют поршни и детали кривошипно-шатунного механизма по весу, производят балансировку. К насосным потерям относят потери мощности на всасывание двигателем воздуха.

Приводы газораспределительного механизма, генератора, помпы и др. так же требуют энергии. В идеале при форсировании силовой установки все их необходимо уравновесить, с целью уменьшения и равномерного распределения мощности. Иногда для этого достаточно воспользоваться изменением передаточного отношения.

Установка сухого картера так же положительно сказывается на экономии мощности. При движении транспортного средства, в обычном картере происходит колебание излишков масла, которые, попадая на коленчатый вал и другие механизмы, вызывают их дисбаланс. Как следствие, потери мощности на противостояние ему. Сухой картер минимизирует эти потери.

https://youtube.com/watch?v=K_lDfewbfjs

Низкая компрессия в двигателе

Сразу отметим, как высокая, так и низкая компрессия является плохим показателем для мотора. Что касается низкой компрессии, в этом случае двигатель плохо заводится на холодную, дымит, не тянет, заметно перерасходует масло, топливо и т.д. В бензиновых моторах при попытках запуска агрегата с низкой компрессией дополнительно заливает свечи, что еще больше осложняет ситуацию.

Обычно низкая компрессия фактически является негерметичностью камеры сгорания и увеличением зазоров между элементами ЦПГ. Если точнее, речь идет о выработке стенок цилиндров, залегании или разрушении компрессионных и маслосъемных колец, дефектах поршня, повреждениях прокладки ГБЦ, прогаре клапанов и т.д.

Как правило, на снижение компрессии в цилиндрах указывает высокий расход масла, сизый масляный дым из выхлопной трубы, потеря мощности и ряд других признаков. Наблюдаются серьезные проблемы при попытке завести холодный двигатель, так как до прогрева зазоры между деталями сильно увеличены.

В большинстве случаев двигатель в подобной ситуации нужно разбирать, после чего осуществляется расточка или гильзовка блока цилиндров, меняются кольца или поршни вместе с кольцами и т.д. Если мотор сильно изношен, тогда  зачастую абсолютно уместно говорить о полном капитальном ремонте двигателя.

Рекомендуем также почитать статью о присадках в двигатель, чтобы мотор не расходовал масло и не дымил. Из этой статьи вы узнаете о типах данных присадок, особенностях их работы, а также преимуществах и недостатках использования таких продуктов.

Что касается различных восстановительных присадок для увеличения компрессии, такое решение весьма спорное. Не будем отрицать, в некоторых случаях раскоксовка двигателя, переход на более вязкую смазку (например, с 5W30 на 10W40) и последующее использование присадок в масло для повышения компрессии позволяет поднять показатель, снизить расход смазки и далее эксплуатировать агрегат не один десяток тысяч километров. Однако такие способы срабатывают далеко не всегда.

Если агрегат сильно изношен, тогда зачастую использование густого масла и присадок можно считать всего лишь временной мерой, которая позволит далее эксплуатировать автомобиль относительно непродолжительное время.

Затем все равно потребуется делать капремонт, причем использование присадок в масло для некоторых ДВС также не проходит без дополнительных негативных последствий. Другими словами, иногда лучше сразу начать ремонтировать мотор, чем оттягивать ремонт, заливая в агрегат не рекомендованное производителем масло, а также различные добавки и присадки.

Лучшие методы форсирования двигателя из опыта автолюбителей

Фильтруем с умом

«Автошноркель повысит сопротивление потоку, поэтому выбирать этот элемент необходимо с учетом проходного сечения и длины. Не нужно устанавливать на него фильтр с малой пропускной способностью.

Сегодня в продаже можно найти фильтры с минимальным сопротивлением потоку. Наиболее популярный K&N, который проходит 1 000 000 миль. Однако у него есть минусы: необходимо постоянно очищать от загрязнений, высушивать и наносить пропитку. Еще один метод автотюнинга — установить фильтр увеличенного размера от грузовой машины, к примеру».

Работаем с турбиной

«Автотурбина — это насос прямого вытеснения. Главный минус данного метода форсирования двигателя — узкий диапазон работы с высоким КПД. Производители автомобилей устраняют этот недостаток разными способами. К примеру, Ford использует турбину, на которой можно менять угол лопаток. Однако в большинстве случаев на заводах устанавливаются автотурбины со стандартными параметрами, поэтому на многих ДВС наблюдается турбояма.

Что делать? Можно использовать механический нагнетатель, который в редких случаях устанавливается на заводские двигатели (даже дизельные). Механический нагнетатель достаточно часто используется в автотюнинге. Например, с его помощью можно выровнять параметры наддува. Однако будьте готовы к серьезным финансовым расходам. Если вам нужно тюнинговать двигатель, чтобы он тянул на низких оборотах, то лучше приобрести турбину, работающую «на низах». К сожалению, на высоких оборотах мотор будет терять в мощности. В некоторых ситуациях при необходимости наддув можно вывести вверх».

Осторожнее с наддувом

«Эффективный метод форсирования двигателя — повысить давление наддува. Однако в этом случае мотор, как бензиновый, так и дизельный, может детонировать. Кроме того, постоянно повышать давление невозможно.

Необходимо соблюдать границы степени сжатия, которые рассчитаны для конкретного ДВС. В противном случае поршни и форкамеры могут прогореть

Поэтому данный метод форсирования двигателя следует использовать с осторожностью. Если увеличить диаметр клапанов, продувка камер станет лучше

На спортивных авто подгоняют коллекторы, а также спиливают выступающую в канал часть втулки клапана. Это также способствует лучшей продувке. Кстати, ресурс мотора после такого тюнинга останется неизменным».

Настроенный выхлоп – настроенный мотор

«Проверенный метод форсирования двигателя — настройка выхлопной системы. Такой тюнинг подойдет как для моторов с наддувом, так и для атмосферных ДВС. Выхлоп создает сопротивление потоку. Чтобы сделать сопротивление меньше, следует укоротить длину либо проходное сечение. В результате мотор станет мощнее. В продаже можно найти специальные устройства, к примеру, позволяющие дистанционно открывать клапан на открытие выхлопа наружу сразу после двигателя. Необходимо также правильно настроить мотор. Чтобы положение распределительного вала на машине было точным, используются разрезные шестерни».

Топливная система и впрыск – идем на взлет

«Заводские ДВС имеют такую настройку, чтобы экономить топливо и не загрязнять окружающую среду. Однако когда вы хотите сделать мотор мощнее, следует усовершенствовать топливную систему. Дизельный автомобиль должен чуть-чуть коптить. Только так будет наилучшее соотношение топливной смеси и воздуха.

Системы опережения впрыска также должны работать правильно. Могут быть переходные режимы, однако сегодня за это отвечает электронный блок управления. Провести корректировку можно не на каждом блоке. Поможет перепрошивка ЭБУ».

Цикл Миллера-Аткинсона

Большую известность цикл Миллера-Аткинсона получил благодаря рекламным брошюрам компании Mazda. Маркетологи гордо заявляют, что инженерам удалось поднять степень сжатия двигателей модели Skyactive до 14 единиц. На самом деле речь идет о геометрической степени сжатия, а не о фактической.

Трюк заключается в том, что во время поднятия поршня на такте сжатия выпускные клапаны еще долгое время открытые, из-за чего часть свежего воздушного заряда выталкивается в выхлопной тракт. Поэтому фактическая степень близка к стандартным для бензиновых моторов 12 единицам. Увеличение термического КПД при этом достигается за счет более эффективного использования энергии расширяющихся газов на такте рабочего хода. За счет большего хода (увеличен диаметр кривошипа) газы дольше давят на поршень. Поэтому при сгорании одной и той же доли топлива, в сравнении с обычным циклом Отто, на коленчатый вал передается больший крутящий момент. Технология позволяет в режимах малых и средних нагрузок значительно уменьшить расход топлива и количество вредных выбросов.

Краткие выводы

Как видим, даже маломощный автомобиль можно заставить работать, как спортивный. Собственно говоря, подобный тюнинг имеет смысл сравнивать с допингом, используемым в профессиональном спорте. Но здесь прямого запрета нет. Максимальные санкции – лишение гарантии, что после окончания гарантийного срока неактуально. Большинство актуальных способов дают относительно небольшой рост мощности, поэтому, если не использовать наиболее радикальные методы, имеет смысл задействовать комбинацию из нескольких менее существенных.

Но в любом случае за увеличение отдачи мотора придётся чем-то расплачиваться. В большинстве случаев это – повышение расхода топлива.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Мастер Юрий Меркулов
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: