Двигатель электрический для электромобиля, прошлое, настоящее и будущее

Как устроен электромобиль, созданный Илоном Маском

Нашумевший предприниматель миллиардер из США, родом из ЮАР, по имени Элон Маск произвел настоящую революцию в мире электромобилей. Он один из первых в новейшее время решил поставить процесс производства этого транспорта на поток и сделать их частью повседневной реальности. Такие начинания не остались без внимания, поэтому имя этого человека стало известно на весь мир.

Как работает электромобиль Tesla? Все так же, как и любые другие подобные продукты. Устройство электромобиля следующее: кузов здесь практически целиком повторяет таковой в Мерседесах бизнес класса. Батарея и двигатель разработан для максимально эффективной, экономичной и длительной работы. Минусом ТС от Tesla сегодня считается слишком слабо развитая сервисная система, которая часто бросает владельца такой дорогой машины на произвол судьбы с его проблемами.

Первые электромобили и первые рекорды

Имя первого изобретателя электромобиля точно никто не знает, но известно, что шотландец Роберт Андерсон, американец Томас Девенпорт и англичанин Роберт Девидсон приблизительно в один и тот же период времени представили миру свои электрические конструкции. Эти безлошадиные электрические экипажи отличались огромным весом, малой скоростью передвижения, не превышающей и 4 км/час, и неособенной практичностью. Главная проблема заключалась в отсутствии подзаряжаемых аккумуляторов, которые бы отличались сравнительно небольшими размерами, позволяющими заряжать электромобили. История их развития продолжилась после того, как в 1865 году французом Гастоном Планте был представлен прообраз современного аккумулятора. Позднее (1878 г.) его усовершенствовал Камилл Фор. Подобные аккумуляторы стали наиболее распространёнными и до сих пор используются в транспортных средствах для запуска двигателей.

В США в 1888 году изобрели трёхколёсный электромобиль с 10 свинцово-кислотными аккумуляторами, весящими примерно 40 кг. Конструкция могла развивать скорость до 8 миль в час при мощности двигателя в 0,5 л. с. Пожалуй, её можно было назвать, скорее, трёхколёсным электровелосипедом.

В 1889 году инженер Ипполит Романов создал первый русский электромобиль на две персоны. Он имел передний привод, причём пассажиры также располагались впереди экипажа, в то время как водитель сидел сзади и возвышался над ними на высоком сиденье. Отсек с аккумуляторами находился позади салона, а сами они были легче аналогов, благодаря чему вес автомобиля удалось снизить до 720 кг.

Для сравнения – популярный в те годы «Жанто» (Франция) весил ровно вдвое больше. Он мог разогнаться до 35 км/ч, однако, проехать мог примерно с километр. Каждый двигатель при 1800 оборотах давал мощность 6 л. с.

Чуть позднее, в 1890 году американец У. Моррисон представил публике 6-местный фургон, который мог разгоняться до 23 км/ч.

Первым, кто решился опробовать электрические самодвижущиеся повозки, стал граф Гастон де Шаслу-Лоба – французский автогонщик. Он же и установил первый скоростной рекорд, зарегистрированный официально в 1898 году. Тогда его автомобиль разогнался до невероятных 63 километров в час.

Через 4 месяца этот рекорд был улучшен другой маркой электромобиля «Le Jamais Contende», причём он сразу же перевалил за знаковые 100 км/ч и составил 105 км/ч. Это удалось бельгийцу Камилю Женатци, который управлял экипажем собственной конструкции с обтекающими контурами. Чтобы поставить рекорд, инженер поставил в машину два электромотора, дававшие в сумме 67 л. с.

Новый вид транспорта быстро приглянулся бизнесменам, поэтому уже в 1898 году по улицам Берлина, Лондона, Парижа и Нью-Йорка уже бегали электрические таксомоторы. Их заряжали в специальных комнатах.

Первые попытки создания электродвигателя

Разработки теоретических предпосылок моментально дали толчок для создания первых электродвигателей и генераторов электрического тока. В 1824 году английский физик и математик Питер Барлоу с помощью прибора наглядно продемонстрировал возможность превращения электрической энергии в механическую. Колесо Барлоу представляло собой два горизонтально расположенных П-образных постоянных магнита, под которыми на одной оси размещены два медных зубчатых колеса. Когда через колеса проходил ток, они начинали вращаться в одном направлении.

При этом ученый заметил, что смена полярности контактов и полюсов магнитов изменяла и направлении вращения колес. По сути, Барлоу изобрел первый униполярный электродвигатель. Его опыт дал пищу для размышления другим изобретателям, и уже в 1831 году была представлена еще одна модель электродвигателя. На этот раз Д. Генри сделал попытку использовать для получения качательного движения отталкивание одноименных и притяжения разноименных магнитных полюсов.

Устройство тягового электродвигателя автомобиля

Устройство электродвигателя автомобиля зависит, от многих факторов.  Электродвигатели для электромобилей могут быть как постоянного, так и переменного тока. В последнее время на машину такого типа ставят только двигатель переменного тока (синхронный или асинхронный).  Первые электромоторы для автомобилей были, конечно, постоянного тока. Это и логично, потому как аккумулятор выдает постоянный ток, и двигатель электрический также постоянного тока. Их применяют и сейчас, но уже гораздо реже. Однако, все не так просто, как кажется на первый взгляд. Электродвигатели переменного тока гораздо экономичнее и надежнее. Выглядеть они могут точно так же как и электродвигатели постоянного тока. Разные типы электродвигателей имеют различную маркировку. AC – говорит о том, что этот двигатель переменного тока, DC – постоянного.

Принцип работы любого электродвигателя состоит во взаимодействии магнитных полей. Еще Фарадей на заре электричества заметил, что если проводник, по которому течет ток, поместить в постоянное магнитное поле, то этот проводник стремится вырваться из этого поля отклоняясь в ту или иную сторону в зависимости от направления движения тока. Если этих проводников много, и магнитное поле сильное, то и работа такого двигателя постоянного тока  будет соответствующей.

В каждом электродвигателе есть ротор (его иногда называют якорь) и статор (его еще называют индуктором). Ротором является вращающееся часть, статором – не вращающееся (стационарная). И ротор и статор имеют обмотки состоящие из отдельных проводников. Для подачи электрического тока на вращающуюся часть двигателя существует коллектор (набор медных пластин собранных в цилиндр). От статора на коллектор ток передается при помощи специальных щеток. Взаимодействие магнитных полей заставляет ротор совершать вращение.

Электродвигатели переменного тока работают несколько по-другому. Статор создает магнитное поле, которое само вращается. Оно (поле) может увлекать за собой стальные предметы, то есть заставлять вращаться ротор. По этой причине на роторе обмотка не нужна. Но в этом случае скорость вращения ротора будет отставать от скорости вращения магнитного поля статора. Такие электродвигатели нарываются асинхронными.

Для того, чтобы точно знать с какой частотой вращается ротор и регулировать эту частоту, необходимо на роторе разместить электрическую обмотку.  Такие электродвигатели называются синхронными. Но вновь появляется слабое звено электродвигателя – коллектор. Щетки изнашиваются и их нужно менять. Асинхронные двигатели в обслуживании не нуждаются.

На рисунке представлено два вида синхронных двигателей (с явными и неявными полюсами). Повторимся, что асинхронный двигатель отличается лишь тем, что на якоре нет обмотки.

При работе каждый электродвигатель нагревается. По этой причине тема охлаждения электрических машин очень важна. Система охлаждения может быть автономная и принудительная. На электродвигателях большегрузных автомобилей, например БелАЗ, охлаждение принудительное (воздух для охлаждения подается специальным вентилятором). У машин малого класса и легковых, на самом двигателе есть крыльчатка, которая продувает воздух через двигатель, тем самым охлаждая его.

Завершение эры электромобилей в XX и воскрешение в XXI веке

В 20-х годах ситуация кардинально поменялась, когда все заметней стал проявляться главный недостаток электромобилей – недостаточный запас хода. В США, Германии и Италии в эти годы массово создавалась сеть автодорог, благодаря которым открылась возможность дальних путешествий. Вот для них больше всего и подходили автомобили с двигателями внутреннего сгорания. Поэтому их стали больше развивать и совершенствовать: для комфортного запуска появился электрический стартер, двигатели стали работать надёжнее и тише. А благодаря конвейерному способу изготовления удалось значительно понизить себестоимость автомобилей и резко увеличить их производство. Поскольку бензин в те годы стоил очень дёшево, то о его расходе никто не задумывался, тем более никого не волновала окружающая среда.

Фактически стремительно развивающаяся история создания электромобилей завершилась к 1930 году — к этому времени их практически прекратили производить.

До начала 1990 годов о них вовсе не вспоминали, пока не возникла острая проблема, связанная с необходимостью охраны окружающей среды. К тому же стало понятно, что запасы нефти не безграничны. Поэтому некоторые компании начали выпускать электрические транспортные средства. Первый современный серийный автомобиль GM EV1 был выпущен в США в 1996 — 2003 годах.

Ещё один занятный факт – электромобили стали единственными средствами передвижения, которые смогли покинуть Землю и работать на других небесных телах. Все виды советских, американских и китайских луноходов и марсоходов по вполне понятным причинам имеют исключительно электрический привод, а источником энергии для них стали солнечные батареи.

Электромобильные гиганты конца XIX – начала XX века

С 1899 года к выпуску электромобилей приступила компания «Woods» из США. Вначале в Чикаго был представлен двухместный автомобиль скромных размеров «Electric Buggy».

А в 1905 году уже можно было полюбоваться роскошным «Woods Victoria», который представлял собой карету, снабжённую парой 2,5-сильных электродвигателей, модель могла разгоняться до 30 км/с.

Ещё через 10 лет был предложен первый гибрид «Dual Power», который разгонялся со старта до 24 км/ч на электрической тяге, а после этого включался 27-сильный бензиновый двигатель, который доводил скорость машины до 56 км/ч. Подобных гибридов, стоящих 2 700 долларов, выпустили порядка 600 штук за три последующих года.

Легендарный Фердинанд Порше также начинал свою карьеру именно с электромобилей. В 1900 году на Парижском автосалоне им была представлена уникальная модель «Lohner-Porsche», на передней оси которого стояла пара электромоторов мощностью 3,5 л. с. каждый. Экипаж был способен разгоняться до 50 км/ч, а ресурс автономного пробега составлял 50 километров.

Позднее Порше специально для британского автогонщика Харта изготовил автомобиль, имевший отдельный электродвигатель в каждом колесе, таким образом, он оказался первым в мире полноприводным автомобилем.

Таланту Порше принадлежит и первый в мире гибридный автомобиль «Semper Vivus», в котором вместо привычных аккумуляторов был установлен 4-цилиндровый бензиновый двигатель, который и вырабатывал электричество.

На рубеже XIX-XX веков скорость и запас хода у электромобилей и машин с бензиновыми двигателями находились примерно на одном уровне. Однако были некоторые сложности с подзарядкой аккумуляторов: их нельзя было просто подключить к розетке, чтобы через несколько часов они оказались заряженными. Поскольку в сети поддерживается переменный ток, то требовался ещё выпрямитель тока – в сеть включался электродвигатель переменного тока, который вращал вал генератора постоянного тока, а уже к последнему и подключались аккумуляторные батареи. Но даже такие технические сложности не помешали быстрому распространению электрических такси, которых к 1910 году по Нью-Йорку бегало уже около 70 тысяч.

Прогресс электромобилей продолжался. Например, в 1900 году на долю электрических автомобилей приходилось 28% всех самодвижущихся транспортных средств. В 1912 году было зарегистрировано 33,8 тысяч новых электромобилей, в то время как бензиновых – только 19,5 тысяч. К подобным объёмам выпуска электромобилей мир смог вернуться только через 100 лет.

Видео об истории создания и развития электромобилей:

Особенно отличилась в производстве электромобилей основанная в 1907 году компания «Detroit Electric». К разработке её моделей приложил свой талант сам Томас Эдисон, он изобрёл никелевую батарею, которая подняла ресурс пробега машины до 80 км без подзарядки. Правда, максимальная скорость авто была невысока – всего 39 км/ч, однако, этого вполне хватало для городских условий. Компания предлагала клиентам несколько кузовов на выбор.

Сам Эдисон разъезжал на купе «Detroit Electric», а следом за ним на подобные же экземпляры сели генерал Эйзенхауэр (ставший позднее президентом США) и сам Джон Рокфеллер. Жена Генри Форда, пренебрегая патриотизмом, некоторое время предпочитала пользоваться этой же маркой.

Позднее, в 1948 году в СССР был построен электромобиль НАМИ-751 с грузоподъёмностью в 1,5 т, который использовали для перевозки почты.

Технологические тенденции

Большинство электродвигателей в современных автомобилях работают от стандартной 12-вольтовой системы, с электрическим генератором, приходящимся в движение ременным приводом для генерации напряжения и свинцово-кислотной батареи для его хранения. Эта схема отлично работала на протяжении десятилетий, но новейшие транспортные средства предоставляют все больше и больше комфорта, развлечений, навигации, помощи водителю и функций безопасности. Это значит, что 12 В бортовая сеть автомобиля не может удовлетворить современным требованиям.

Переход от 12 В систем питания к 48 В имеет ряд преимуществ. Одним из главных преимуществ использования напряжения питания 48 В — это 4-кратное снижение тока при той же мощности, что сопровождается снижением веса в кабелей электроснабжения и обмоток электродвигателя. Примеры нагрузок, потребляющих большие токи, которые могут быть снижены благодаря применению источника питания 48 В, включают в себя стартер, турбокомпрессор, топливный насос, водяной насос и охлаждающие вентиляторы. Внедрение электрической системы 48 В для этих компонентов может привести к экономии топлива примерно на 10 процентов.

Щеточные двигатели постоянного тока являются традиционным решением для управления большинством функций в автомобильном салоне. Поскольку щетки обеспечивают коммутацию на достаточно хорошем уровне, эти двигатели просты в управлении и относительно недороги. В некоторых применениях бесщеточные двигатели постоянного тока (BLDC) могут обеспечить значительные преимущества с точки зрения плотности мощности, что позволяет снизить вес и обеспечить лучшую экономию топлива и снизить выбросы. Производители используют двигатели BLDC в стеклоочистителях, обогревателях кабины, системах вентиляции и кондиционирования (HVAC), а также насосах. В этих приложениях двигатель может работать в течение длительного времени, в отличие от кратковременной работы, например, в стеклоподъемниках или системах регулировки сидений, где простота и экономичность щеточных двигателей все еще имеют преимущество.

ТЭД пульсирующего тока

ТЭД пульсирующего тока питается от однофазного выпрямителя ЭПС; пульсация тока частотой 100 Гц при номинальной нагрузке 20-30%. Номинальное напряжение на коллекторе 750-1000 В, максимальное 1200 В. На электровозах сила тока ТЭД — до 1200 А, мощность — до 1000 кВт, на моторных вагонах — до 400-600 А и 300 кВт. Напряжение ТЭД регулируется переключением обмоток тягового трансформатора или изменением угла открытия тиристоров (при питании от управляемого выпрямителя).

Недостатком любых конструкций коллекторных ТЭД является ненадежный в работе коллекторно-щеточный узел, ограничивающий мощность и частоту вращения (допустимая линейная скорость на поверхности коллектора 50-60 м/с) и требующий регулярного обслуживания при эксплуатации. Основные технические данные ТЭД, применяемых на ЭПС локомотивного парка России и других стран СНГ, приведены в таблице.

Как в электромобиле работает печка?

Зимой с электромобилем дела обстоят не так, как с его оппонентами оборудованными двигателями внутреннего сгорания, но в любом случае, у печки электрокара принцип работы прост: её спирали нагреваются за счёт электроэнергии аккумулятора. Несмотря на то, что в последнее время в сети всё чаще встречается информация об инновационных разработках касающихся подачи тепла и его источников, принцип обогрева внутреннего пространства электрокара, остаётся вполне традиционным.

Акцент на энергосбережении вынуждает разработчиков делать обогрев салона максимально эффективным: температура внутреннего пространства доходит до комнатного показателя или даже выше, всего за несколько минут

Особое внимание уделено подогреву рулевого обода и посадочных мест, не отбирающего много энергии у АКБ

Но, как ни крути, а печка электрокара может забрать у накопителя весьма солидную долю заряда, что естественным образом повлияет на сокращение пробега на одном заряде. Если взять за пример такой популярный электрический автомобиль как Ниссан Лиф, то, как показывает опыт эксплуатации большого количества обладателей этой машины, в летнее время на одном заряде можно вытянуть 150 километров, однако если за бортом температура хотя бы -2 градуса, от 150-километрового пробега не остаётся и следа — можно рассчитывать максимум на 90-110 км. Но и это ещё не всё: когда столбик термометра опускается до температуры -15, то преодолеваемая дистанция становится просто смехотворной — 40-80 километров, это во зависимости от поддерживаемой температуры и стиля езды.

Из всего выше сказанного можно сделать вполне логический вывод: зима — самое худшее время года для езды на электрокаре и если в нём нет такой острой необходимости, то зимой лучше отдать предпочтение общественному транспорту.

Подбор электродвигателя и карта эффективности

При подборе электродвигателей конструктор ориентируется на сведения из каталога производителя, в котором, как правило, содержится только информация о максимальной проектной мощности, номинальной (максимальной) частоте вращения ротора и КПД при этой скорости. Однако в действительности каждый электродвигатель характеризуется картой эффективности, показанной на рис. 1, которая получается расчетным методом, с использованием программ математического моделирования или при помощи комплексных испытаний двигателя с нагрузочными устройствами на базе генераторов или порошковых муфт (рис. 2).

Рис. 1. Карта эффективности электродвигателя

Построение карты эффективности имеет существенное преимущество — это отображение КПД двигателя на каждом режиме эксплуатации: скорости вращения и нагрузки, испытываемой валом.

Рис. 2. Нагрузочный стенд компании ООО «Мотохром» для испытания двигателей мощностью до 1,5 кВт

С учетом темпов развития транспорта на электрической тяге предъявляются повышенные требования к гибкому режиму работы их электродвигателей, в отличие от их использования до настоящего момента, как правило, в «вентиляторном» варианте (в том числе для привода насосов), когда мотор работает при одной определенной нагрузке и скорости вращения.

Электродвигатель для электротранспорта характеризуется:

  • Эксплуатацией в широком диапазоне частот вращения и нагрузки: езда с разной скоростью, езда в горку/с горки, по разным дорожным покрытиям.
  • Требованиями к высокому КПД, который напрямую определяет важнейшую характеристику транспорта — запас хода между полными зарядами аккумуляторов.
  • Работой в паре с ведущим рабочим узлом (пропеллером/крыльчаткой/колесом), который также имеет свою зависимость «скорость–КПД».
  • Эксплуатацией от аккумуляторной батареи, напряжение которой падает при разрядке и под высокой нагрузкой, что приводит к снижению максимальной скорости работы двигателя и возрастанию рабочих токов.
  • Снижением максимальных рабочих оборотов двигателя под нагрузкой.

Таким образом, при создании современных электротранспортных средств, для качественной разработки или подбора двигателя, необходимо иметь его карту эффективности. Карта понадобится и при проектировании движителя, о чем будет рассказано в следующем разделе.

Особенности кузова электрического автомобиля

Как должен выглядеть современный электромобиль? Очень интересный вопрос, на который кстати, имеется множество ответов. Дизайнеры, как правило, стараются выделить «электрички» из общего потока однотипных транспортных средств оснащённых ДВС, придавая своим творениям футуристический, смелый и даже диковинный образ. Этим стилисты хотят подчеркнуть то обстоятельство, что их разработка тесно связана с будущим. Но в то же время, имеет место и масса электрокаров, которые внешне можно легко спутать с традиционными машинами, к которым все привыкли с детства. Кроме того, производитель, дабы снизить затраты на производство своей продукции, часто идёт более рациональным путём: кузов не требующий глобальных переделок, просто берётся от «старшего брата» с двигателем внутреннего сгорания, поэтому внешне, обе модификации практически идентичны.

При создании электромобиля с нуля, особое внимание уделяется аэродинамическим свойствам его кузова и делается это по той причине, что автомобиль с низким сопротивлением воздушным массам, как и в случае с обыкновенными авто, будет затрачивать меньше энергии. Однако в случае с электрической машиной, это намного важнее, так как современные электрокары не могут на данный момент похвастать внушительным пробегом на одном заряде

Есть конечно и исключения, но их не много и всё равно они грандиозно проигрывают автомобилям с ДВС.

Вот пример: всенародно любимый Форд Фокус работающий на бензине, сподобился проехать на полном баке 1789 километров, в то время как элитный электрокар Tesla Model S, может протянуть на полном заряде всего 500 километров. А знаете, сколько пройдёт электрическая вариация Ford Focus Electric? 185 километров, всего-навсего! Как думаете, для кого показатель аэродинамического сопротивление окажется критичней? Думается, после таких технических характеристик, всем, итак, понятно, почему разработчики борются за каждый лишний километр пробега электромобиля любыми способами.

Принцип действия

Если в привычном нам ДВС коленвал вращается благодаря энергии расширяющихся газов, которые толкают поршень, то вал электродвигателя вращается благодаря явлению магнитной индукции – силовым полям, которые возникают около проводников с электрическим током. Чтобы сделать эти поля сильными и управляемыми, проводники собраны в обмотки, размещенные на статоре (неподвижная часть электромотора) и роторе (он же якорь, подвижная, вращающаяся часть).

Упрощенно говоря, при подаче напряжения на клеммы двигателя на его статоре и роторе возникают магнитные поля. Они отталкиваются друг от друга, заставляя ротор смещаться относительно статора – проворачиваться. Благодаря наличию коллектора (об этом ниже) или переменному току (и об этом ниже), поле одной из обмоток – ротора или статора – также начинается вращаться, “догоняя” второе из полей. Поэтому ротор вращается до тех пор, пока не будет отключена одна из обмоток и вокруг нее не исчезнет магнитное поле.

Двигатель переменного тока устроен очень похоже. Но в автомобилях “переменка” используется только в тяговых электродвигателях

Моторы для электрокаров


Существует большое количество разных разработок электрических моторов, которые отличаются между собой по множеству параметров. Иногда эти отличия весьма разительны.

Есть разделение по принципу работы:

  • По типу тока – переменный, постоянный или гибридный. Они, в свою очередь, могут разделяться на такие типы:
    • синхронный;
    • асинхронный;
    • шаговые и сервоприводы – как правило, используются в промышленных станках для точного позиционирования рабочего инструмента.
    • коллекторный и безколлекторный.
  • Мотор-колесо.

Каждый из этих приводов имеет свои особенности, которые определяют область применения. Поэтому давайте рассмотрим их подробнее.

Отличия по типу тока

Как мы знаем, существует два типа тока: переменный и постоянный.

По сути, такие моторы работают по схожим принципам: все отличия заключаются в способе питания привода. А он, в свою очередь, определяет некоторые особенности:

Электродвигатель постоянного тока имеет возможность более плавного и точного регулирования оборотов

А еще более высокий КПД, что очень важно в автомобилях. Но такой тип привода имеет и более высокую стоимость

Конструктивная особенность в том, что обмотка находится на роторе (он же называется якорем), который является подвижной вращающейся частью.


Двигатель переменного тока устроен так: обмотка мотора расположена на статоре. Причем между статором и ротором есть воздушный зазор, величина которого определяет другие дополнительные особенности привода. По большей части эти устройства нашли  признание благодаря весьма простой конструкции.

Они разделяются на два типа:

  • Однофазный привод не имеет начального пускового момента, поэтому по большей части используется в бытовых приборах. Направление вращения определяется внешними силами в момент запуска.
  • Трехфазные разделяются на два подвида:
    • с короткозамкнутым ротором;
    • С фазным ротором.

Именно трехфазные электроприводы могут быть синхронными и асинхронными. Как раз асинхронный мотор с короткозамкнутым ротором получил наибольшее распространение.

Суть универсальных приводов заключается в том, что вся работа контролируется платой управления. Такие двигатели называются ЕС (англ. electronically communicated). Ротор такого привода имеет постоянные магниты, а статор оснащен набором неподвижных катушек. Подключение осуществляется при помощи электронных схем: они могут переключать фазы в неподвижных катушках, что помогает поддерживать вращение ротора.

В нужный момент плата управления подключает подачу постоянного тока в определенной полярности. Это увеличивает точность электромотора. Благодаря такой конструкции и внешнему управлению двигатель ЕС не имеет ограниченной синхронной скорости вращения.

Особенности мотора-колесо


Мотор-колесо уже давно известен, однако не получал применение в автомобилях в силу некоторых ограничений того времени. Относительно недавно была применена новая технология пусковой обмотки, благодаря чему получилось достичь высокого пускового момента.

Современное мотор-колесо для электромобиля имеет несколько преимуществ:

  • Устойчивость к перепадам температур.
  • Простота и дешевизна в производстве (сборке).
  • Низкий уровень шума при работе и малый вес.
  • Надежность и долговечность.
  • Простота в обслуживании.

По большей части это электродвигатели российского производства, так как изначально они были придуманы в РФ ученым Дуюновым, затем модернизированы.

Мотор-колесо состоит из тех же компонентов, что и обычный электродвигатель:

  • ротор с магнитами;
  • статор с катушками.

На статор подается электричество, которое при помощи катушек создает магнитное поле, воздействующее на магниты ротора, заставляя их вращаться. При этом все компоненты спрятаны внутри колеса.

Внутри ближе к центру оси располагается неподвижный статор с множеством катушек. Вокруг него подвижная часть – ротор с магнитами. Это традиционное расположение, но существуют варианты и с обратным порядком, когда вращающаяся часть находится внутри, а вокруг ротора располагается неподвижный статор. Такая конструкция имеет определенные преимущества, но реализовать ее технически сложнее.

Устройство электромобиля и принцип его работы

Устройство электромобиля не содержит в себе никаких тайн и сложностей, так как основывается на общеизвестных физических и технических принципах. В целом, конструкция такой машины в области ходовой части, кузова, управления может совсем не отличаться от классического транспорта. Главное отличие состоит именно в моторе, который работает не на жидком дизельном топливе или бензине, а на генерируемом электрическом токе.

Принцип работы электромобиля заключается в следующем. В нем задействован механизм электромагнитной индукции, который состоит в том, что при наличии переменного электрического тока в проводнике возникает магнитное поле, которое по закону Ампера выполняет отклоняющее действие. В моторе существуют два основных компонента: ротор и статор. Статор остается постоянно неподвижным и по нему пропускается электрический ток определенной частоты. Генерируемое в статоре магнитное поле действует на ротор и тот начинает вращаться. Получаемая механическая энергия используется для движения транспортного средства. Скорость движка прямо пропорциональна частоте тока и количеству установленных магнитных полюсов.

В целом, устройство электромобиля достаточно простое, но требует очень аккуратного и точного исполнения. Ток для питания статора генерируется установленными на борту батареями. В зависимости от модели машины, батареи могут иметь разную емкость, конструкцию, особенности используемых механизмов работы.

Дополнительные узлы

Электронная составляющая современных электрокаров развита по полной программе, ведь на ней лежит большая ответственность. Она должна обеспечивать слаженную работу всех датчиков и систем, эффективно отслеживать заряд аккумуляторной батареи, дабы электрокар просто не остановился в самый неподходящий момент прямо посредине дороги, да много чего ещё делает умная и сложная электроника.

Основное, что здесь отличает электрокар от обычной машины — зарядное устройство, предназначенное для того, чтобы была возможность заряжать «электричку» от бытовой розетки. Естественно, как и у обычных авто, на борту электрических имеются осветительные приборы и как правило, максимально энергоэффективные, сами понимаете, для электрокара экономия электроэнергии, одна из первостепенных задач, ведь каждый километр пробега на вес золота. Комфорт в салоне обеспечивает такое же оборудование, как и в стандартных машинах: электропакет, кондиционер, электрический усилитель рулевого управления, аудиосистема и т. д.

Также на электрической машине может быть установлено такое интересное приспособление, как имитатор звука работы двигателя внутреннего сгорания. Изобретение скажем так действительно полезное, ведь электромобили настолько тихие при движении, особенно на низких скоростях, что пешеход может их легко не заметить, создав тем самым аварийную ситуацию.

Тяговые электродвигатели

Тяговые электродвигатели (ТЭД) классифицируются по назначению, конструктивному исполнению, по приводу на ось, способу питания электроэнергией и роду тока, режиму работы, способу охлаждения, степени защиты, климатическому исполнению. Отличие ТЭД от общепромышленных заключается в предельной интенсивности использования электротехнических материалов. Эти требования вызваны работой двигателей в ограниченных габаритах, при низких весовых показателях и высокой переменной механической и электрической нагрузке на конструкции, в условиях повышенного попадания вовнутрь пыли и влаги (в том числе с образованием инея и при низких температурах), а также длительным сроком службы. На условия эксплуатации ТЭД на ж.-д. транспорте РФ разработаны
ГОСТ 2582-81 и ГОСТ 15150-69, по которым допускаются одиночные удары с ускорением до 280 м/с2 при опорно-осевом подвешивании двигателя, работа при температуре окружающего воздуха от минус 50 «С (иногда от минус 60 °С) до плюс 40 °С. При работе в зоне умеренного или умеренно-холодного климата
регламентирована относительная влажность воздуха — 80%, среднегодовая абсолютная влажность -11 г-м2; допустима эксплуатация на высоте 1200 м — иногда до 1400 м от уровня моря; срок службы 25-30 лет. Резкое изменение механической нагрузки, температуры и влажности провоцирует образование трещин
в конструкциях, изоляционных материалах, антикоррозионном покрытии.

ТЭД может, преобразуя электрическую энергию в механическую, приводить во вращение одну ось — индивидуальный привод, несколько осей — групповой привод. ТЭД может работать в режиме реверсирования (изменять направление вращения), а также работать в режиме генератора (при электрическом торможении). По конструктивному исполнению различают коллекторные тяговые электродвигатели и бесколлекторные тяговые электродвигатели. В качестве ТЭД на специальном высокоскоростном электроподвижном составе используются линейные электродвигатели.

Устройство электродвигателя

На полюсах железного сердечника кольцевой формы, называемого статором электродвигателя, размещаются три обмотки, сети трехфазного тока расположенные одна относительно другой под углом 120°. Внутри сердечника укреплен на оси металлический цилиндр, называемый ротором электродвигателя. Если обмотки соединить между собой и подключить их к сети трехфазного тока, то общий магнитный поток, создаваемый тремя полюсами, окажется вращающимся. Суммарный магнитный поток в тоже время будет менять свое направление с изменением направления тока в обмотках статора (полюсов). При этом за один период изменения тока в обмотках магнитный поток сделает полный оборот. Вращающийся магнитный поток будет увлекать за собой цилиндр, и мы получим, таким образом асинхронный электродвигатель.

Обмотки статора могут быть соединены «звездой», однако вращающееся магнитное поле образуется и при соединении их «треугольником». Если поменять местами обмотки второй и третьей фаз, то магнитный поток изменит направление своего вращения на обратное. Такого же результата можно добиться, не меняя местами обмотки статора, а направляя ток второй фазы сети в третью фазу статора, а третью фазу сети — во вторую фазу статора. Таким образом, изменить направление вращения магнитного поля можно переключением двух любых фаз.

Асинхронный вид

Чаще всего используется трехфазный короткозамкнутый асинхронный двигатель. В этом случае круговое магнитное поле пронизывает короткозамкнутую роторную обмотку, из-за чего возникает ток индукции. Асинхронным его называют потому, что вращение ротора не равно вращению магнитного статора.

Применение типа распространено во многих отраслях техники, в бытовых приборах (холодильниках, стиральных машинах, кондиционерах), в промышленности, например в дерево- и металлообрабатывающей, а также в ткачестве. Они работают стабильнее других видов, стоят дешевле и просты в эксплуатации.

В заключение

Новые разработки двигателей для электромобилей позволили достичь небывалых результатов:

  • Крутящий момент максимален сразу с момента запуска.
  • Нет трущихся деталей.
  • Малые размеры.
  • Надежность и долговечность.
  • Низкий уровень шума.
  • Исключено негативное влияние на экологию.
  • Широкий диапазон управления оборотами позволяет полностью убрать коробку переключения передач.

И это далеко не весь список достоинств. Однако двигатель для электрокара имеет два довольно существенных минуса:

  • Малая дальность пробега без подзарядки.
  • Нет оборудованных станций для заряда аккумуляторов.

Эти проблемы решаемы и минимизируются уже сегодня: разрабатываются новые технологии, позволяющие увеличить дальность пробега, создаются станции заряда электрокаров.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Мастер Юрий Меркулов
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Двигатель электрический для электромобиля, прошлое, настоящее и будущее

Как устроен электромобиль, созданный Илоном Маском

Нашумевший предприниматель миллиардер из США, родом из ЮАР, по имени Элон Маск произвел настоящую революцию в мире электромобилей. Он один из первых в новейшее время решил поставить процесс производства этого транспорта на поток и сделать их частью повседневной реальности. Такие начинания не остались без внимания, поэтому имя этого человека стало известно на весь мир.

Как работает электромобиль Tesla? Все так же, как и любые другие подобные продукты. Устройство электромобиля следующее: кузов здесь практически целиком повторяет таковой в Мерседесах бизнес класса. Батарея и двигатель разработан для максимально эффективной, экономичной и длительной работы. Минусом ТС от Tesla сегодня считается слишком слабо развитая сервисная система, которая часто бросает владельца такой дорогой машины на произвол судьбы с его проблемами.

Первые электромобили и первые рекорды

Имя первого изобретателя электромобиля точно никто не знает, но известно, что шотландец Роберт Андерсон, американец Томас Девенпорт и англичанин Роберт Девидсон приблизительно в один и тот же период времени представили миру свои электрические конструкции. Эти безлошадиные электрические экипажи отличались огромным весом, малой скоростью передвижения, не превышающей и 4 км/час, и неособенной практичностью. Главная проблема заключалась в отсутствии подзаряжаемых аккумуляторов, которые бы отличались сравнительно небольшими размерами, позволяющими заряжать электромобили. История их развития продолжилась после того, как в 1865 году французом Гастоном Планте был представлен прообраз современного аккумулятора. Позднее (1878 г.) его усовершенствовал Камилл Фор. Подобные аккумуляторы стали наиболее распространёнными и до сих пор используются в транспортных средствах для запуска двигателей.

В США в 1888 году изобрели трёхколёсный электромобиль с 10 свинцово-кислотными аккумуляторами, весящими примерно 40 кг. Конструкция могла развивать скорость до 8 миль в час при мощности двигателя в 0,5 л. с. Пожалуй, её можно было назвать, скорее, трёхколёсным электровелосипедом.

В 1889 году инженер Ипполит Романов создал первый русский электромобиль на две персоны. Он имел передний привод, причём пассажиры также располагались впереди экипажа, в то время как водитель сидел сзади и возвышался над ними на высоком сиденье. Отсек с аккумуляторами находился позади салона, а сами они были легче аналогов, благодаря чему вес автомобиля удалось снизить до 720 кг.

Для сравнения – популярный в те годы «Жанто» (Франция) весил ровно вдвое больше. Он мог разогнаться до 35 км/ч, однако, проехать мог примерно с километр. Каждый двигатель при 1800 оборотах давал мощность 6 л. с.

Чуть позднее, в 1890 году американец У. Моррисон представил публике 6-местный фургон, который мог разгоняться до 23 км/ч.

Первым, кто решился опробовать электрические самодвижущиеся повозки, стал граф Гастон де Шаслу-Лоба – французский автогонщик. Он же и установил первый скоростной рекорд, зарегистрированный официально в 1898 году. Тогда его автомобиль разогнался до невероятных 63 километров в час.

Через 4 месяца этот рекорд был улучшен другой маркой электромобиля «Le Jamais Contende», причём он сразу же перевалил за знаковые 100 км/ч и составил 105 км/ч. Это удалось бельгийцу Камилю Женатци, который управлял экипажем собственной конструкции с обтекающими контурами. Чтобы поставить рекорд, инженер поставил в машину два электромотора, дававшие в сумме 67 л. с.

Новый вид транспорта быстро приглянулся бизнесменам, поэтому уже в 1898 году по улицам Берлина, Лондона, Парижа и Нью-Йорка уже бегали электрические таксомоторы. Их заряжали в специальных комнатах.

Первые попытки создания электродвигателя

Разработки теоретических предпосылок моментально дали толчок для создания первых электродвигателей и генераторов электрического тока. В 1824 году английский физик и математик Питер Барлоу с помощью прибора наглядно продемонстрировал возможность превращения электрической энергии в механическую. Колесо Барлоу представляло собой два горизонтально расположенных П-образных постоянных магнита, под которыми на одной оси размещены два медных зубчатых колеса. Когда через колеса проходил ток, они начинали вращаться в одном направлении.

При этом ученый заметил, что смена полярности контактов и полюсов магнитов изменяла и направлении вращения колес. По сути, Барлоу изобрел первый униполярный электродвигатель. Его опыт дал пищу для размышления другим изобретателям, и уже в 1831 году была представлена еще одна модель электродвигателя. На этот раз Д. Генри сделал попытку использовать для получения качательного движения отталкивание одноименных и притяжения разноименных магнитных полюсов.

Устройство тягового электродвигателя автомобиля

Устройство электродвигателя автомобиля зависит, от многих факторов.  Электродвигатели для электромобилей могут быть как постоянного, так и переменного тока. В последнее время на машину такого типа ставят только двигатель переменного тока (синхронный или асинхронный).  Первые электромоторы для автомобилей были, конечно, постоянного тока. Это и логично, потому как аккумулятор выдает постоянный ток, и двигатель электрический также постоянного тока. Их применяют и сейчас, но уже гораздо реже. Однако, все не так просто, как кажется на первый взгляд. Электродвигатели переменного тока гораздо экономичнее и надежнее. Выглядеть они могут точно так же как и электродвигатели постоянного тока. Разные типы электродвигателей имеют различную маркировку. AC – говорит о том, что этот двигатель переменного тока, DC – постоянного.

Принцип работы любого электродвигателя состоит во взаимодействии магнитных полей. Еще Фарадей на заре электричества заметил, что если проводник, по которому течет ток, поместить в постоянное магнитное поле, то этот проводник стремится вырваться из этого поля отклоняясь в ту или иную сторону в зависимости от направления движения тока. Если этих проводников много, и магнитное поле сильное, то и работа такого двигателя постоянного тока  будет соответствующей.

В каждом электродвигателе есть ротор (его иногда называют якорь) и статор (его еще называют индуктором). Ротором является вращающееся часть, статором – не вращающееся (стационарная). И ротор и статор имеют обмотки состоящие из отдельных проводников. Для подачи электрического тока на вращающуюся часть двигателя существует коллектор (набор медных пластин собранных в цилиндр). От статора на коллектор ток передается при помощи специальных щеток. Взаимодействие магнитных полей заставляет ротор совершать вращение.

Электродвигатели переменного тока работают несколько по-другому. Статор создает магнитное поле, которое само вращается. Оно (поле) может увлекать за собой стальные предметы, то есть заставлять вращаться ротор. По этой причине на роторе обмотка не нужна. Но в этом случае скорость вращения ротора будет отставать от скорости вращения магнитного поля статора. Такие электродвигатели нарываются асинхронными.

Для того, чтобы точно знать с какой частотой вращается ротор и регулировать эту частоту, необходимо на роторе разместить электрическую обмотку.  Такие электродвигатели называются синхронными. Но вновь появляется слабое звено электродвигателя – коллектор. Щетки изнашиваются и их нужно менять. Асинхронные двигатели в обслуживании не нуждаются.

На рисунке представлено два вида синхронных двигателей (с явными и неявными полюсами). Повторимся, что асинхронный двигатель отличается лишь тем, что на якоре нет обмотки.

При работе каждый электродвигатель нагревается. По этой причине тема охлаждения электрических машин очень важна. Система охлаждения может быть автономная и принудительная. На электродвигателях большегрузных автомобилей, например БелАЗ, охлаждение принудительное (воздух для охлаждения подается специальным вентилятором). У машин малого класса и легковых, на самом двигателе есть крыльчатка, которая продувает воздух через двигатель, тем самым охлаждая его.

Завершение эры электромобилей в XX и воскрешение в XXI веке

В 20-х годах ситуация кардинально поменялась, когда все заметней стал проявляться главный недостаток электромобилей – недостаточный запас хода. В США, Германии и Италии в эти годы массово создавалась сеть автодорог, благодаря которым открылась возможность дальних путешествий. Вот для них больше всего и подходили автомобили с двигателями внутреннего сгорания. Поэтому их стали больше развивать и совершенствовать: для комфортного запуска появился электрический стартер, двигатели стали работать надёжнее и тише. А благодаря конвейерному способу изготовления удалось значительно понизить себестоимость автомобилей и резко увеличить их производство. Поскольку бензин в те годы стоил очень дёшево, то о его расходе никто не задумывался, тем более никого не волновала окружающая среда.

Фактически стремительно развивающаяся история создания электромобилей завершилась к 1930 году — к этому времени их практически прекратили производить.

До начала 1990 годов о них вовсе не вспоминали, пока не возникла острая проблема, связанная с необходимостью охраны окружающей среды. К тому же стало понятно, что запасы нефти не безграничны. Поэтому некоторые компании начали выпускать электрические транспортные средства. Первый современный серийный автомобиль GM EV1 был выпущен в США в 1996 — 2003 годах.

Ещё один занятный факт – электромобили стали единственными средствами передвижения, которые смогли покинуть Землю и работать на других небесных телах. Все виды советских, американских и китайских луноходов и марсоходов по вполне понятным причинам имеют исключительно электрический привод, а источником энергии для них стали солнечные батареи.

Электромобильные гиганты конца XIX – начала XX века

С 1899 года к выпуску электромобилей приступила компания «Woods» из США. Вначале в Чикаго был представлен двухместный автомобиль скромных размеров «Electric Buggy».

А в 1905 году уже можно было полюбоваться роскошным «Woods Victoria», который представлял собой карету, снабжённую парой 2,5-сильных электродвигателей, модель могла разгоняться до 30 км/с.

Ещё через 10 лет был предложен первый гибрид «Dual Power», который разгонялся со старта до 24 км/ч на электрической тяге, а после этого включался 27-сильный бензиновый двигатель, который доводил скорость машины до 56 км/ч. Подобных гибридов, стоящих 2 700 долларов, выпустили порядка 600 штук за три последующих года.

Легендарный Фердинанд Порше также начинал свою карьеру именно с электромобилей. В 1900 году на Парижском автосалоне им была представлена уникальная модель «Lohner-Porsche», на передней оси которого стояла пара электромоторов мощностью 3,5 л. с. каждый. Экипаж был способен разгоняться до 50 км/ч, а ресурс автономного пробега составлял 50 километров.

Позднее Порше специально для британского автогонщика Харта изготовил автомобиль, имевший отдельный электродвигатель в каждом колесе, таким образом, он оказался первым в мире полноприводным автомобилем.

Таланту Порше принадлежит и первый в мире гибридный автомобиль «Semper Vivus», в котором вместо привычных аккумуляторов был установлен 4-цилиндровый бензиновый двигатель, который и вырабатывал электричество.

На рубеже XIX-XX веков скорость и запас хода у электромобилей и машин с бензиновыми двигателями находились примерно на одном уровне. Однако были некоторые сложности с подзарядкой аккумуляторов: их нельзя было просто подключить к розетке, чтобы через несколько часов они оказались заряженными. Поскольку в сети поддерживается переменный ток, то требовался ещё выпрямитель тока – в сеть включался электродвигатель переменного тока, который вращал вал генератора постоянного тока, а уже к последнему и подключались аккумуляторные батареи. Но даже такие технические сложности не помешали быстрому распространению электрических такси, которых к 1910 году по Нью-Йорку бегало уже около 70 тысяч.

Прогресс электромобилей продолжался. Например, в 1900 году на долю электрических автомобилей приходилось 28% всех самодвижущихся транспортных средств. В 1912 году было зарегистрировано 33,8 тысяч новых электромобилей, в то время как бензиновых – только 19,5 тысяч. К подобным объёмам выпуска электромобилей мир смог вернуться только через 100 лет.

Видео об истории создания и развития электромобилей:

Особенно отличилась в производстве электромобилей основанная в 1907 году компания «Detroit Electric». К разработке её моделей приложил свой талант сам Томас Эдисон, он изобрёл никелевую батарею, которая подняла ресурс пробега машины до 80 км без подзарядки. Правда, максимальная скорость авто была невысока – всего 39 км/ч, однако, этого вполне хватало для городских условий. Компания предлагала клиентам несколько кузовов на выбор.

Сам Эдисон разъезжал на купе «Detroit Electric», а следом за ним на подобные же экземпляры сели генерал Эйзенхауэр (ставший позднее президентом США) и сам Джон Рокфеллер. Жена Генри Форда, пренебрегая патриотизмом, некоторое время предпочитала пользоваться этой же маркой.

Позднее, в 1948 году в СССР был построен электромобиль НАМИ-751 с грузоподъёмностью в 1,5 т, который использовали для перевозки почты.

Технологические тенденции

Большинство электродвигателей в современных автомобилях работают от стандартной 12-вольтовой системы, с электрическим генератором, приходящимся в движение ременным приводом для генерации напряжения и свинцово-кислотной батареи для его хранения. Эта схема отлично работала на протяжении десятилетий, но новейшие транспортные средства предоставляют все больше и больше комфорта, развлечений, навигации, помощи водителю и функций безопасности. Это значит, что 12 В бортовая сеть автомобиля не может удовлетворить современным требованиям.

Переход от 12 В систем питания к 48 В имеет ряд преимуществ. Одним из главных преимуществ использования напряжения питания 48 В — это 4-кратное снижение тока при той же мощности, что сопровождается снижением веса в кабелей электроснабжения и обмоток электродвигателя. Примеры нагрузок, потребляющих большие токи, которые могут быть снижены благодаря применению источника питания 48 В, включают в себя стартер, турбокомпрессор, топливный насос, водяной насос и охлаждающие вентиляторы. Внедрение электрической системы 48 В для этих компонентов может привести к экономии топлива примерно на 10 процентов.

Щеточные двигатели постоянного тока являются традиционным решением для управления большинством функций в автомобильном салоне. Поскольку щетки обеспечивают коммутацию на достаточно хорошем уровне, эти двигатели просты в управлении и относительно недороги. В некоторых применениях бесщеточные двигатели постоянного тока (BLDC) могут обеспечить значительные преимущества с точки зрения плотности мощности, что позволяет снизить вес и обеспечить лучшую экономию топлива и снизить выбросы. Производители используют двигатели BLDC в стеклоочистителях, обогревателях кабины, системах вентиляции и кондиционирования (HVAC), а также насосах. В этих приложениях двигатель может работать в течение длительного времени, в отличие от кратковременной работы, например, в стеклоподъемниках или системах регулировки сидений, где простота и экономичность щеточных двигателей все еще имеют преимущество.

ТЭД пульсирующего тока

ТЭД пульсирующего тока питается от однофазного выпрямителя ЭПС; пульсация тока частотой 100 Гц при номинальной нагрузке 20-30%. Номинальное напряжение на коллекторе 750-1000 В, максимальное 1200 В. На электровозах сила тока ТЭД — до 1200 А, мощность — до 1000 кВт, на моторных вагонах — до 400-600 А и 300 кВт. Напряжение ТЭД регулируется переключением обмоток тягового трансформатора или изменением угла открытия тиристоров (при питании от управляемого выпрямителя).

Недостатком любых конструкций коллекторных ТЭД является ненадежный в работе коллекторно-щеточный узел, ограничивающий мощность и частоту вращения (допустимая линейная скорость на поверхности коллектора 50-60 м/с) и требующий регулярного обслуживания при эксплуатации. Основные технические данные ТЭД, применяемых на ЭПС локомотивного парка России и других стран СНГ, приведены в таблице.

Как в электромобиле работает печка?

Зимой с электромобилем дела обстоят не так, как с его оппонентами оборудованными двигателями внутреннего сгорания, но в любом случае, у печки электрокара принцип работы прост: её спирали нагреваются за счёт электроэнергии аккумулятора. Несмотря на то, что в последнее время в сети всё чаще встречается информация об инновационных разработках касающихся подачи тепла и его источников, принцип обогрева внутреннего пространства электрокара, остаётся вполне традиционным.

Акцент на энергосбережении вынуждает разработчиков делать обогрев салона максимально эффективным: температура внутреннего пространства доходит до комнатного показателя или даже выше, всего за несколько минут

Особое внимание уделено подогреву рулевого обода и посадочных мест, не отбирающего много энергии у АКБ

Но, как ни крути, а печка электрокара может забрать у накопителя весьма солидную долю заряда, что естественным образом повлияет на сокращение пробега на одном заряде. Если взять за пример такой популярный электрический автомобиль как Ниссан Лиф, то, как показывает опыт эксплуатации большого количества обладателей этой машины, в летнее время на одном заряде можно вытянуть 150 километров, однако если за бортом температура хотя бы -2 градуса, от 150-километрового пробега не остаётся и следа — можно рассчитывать максимум на 90-110 км. Но и это ещё не всё: когда столбик термометра опускается до температуры -15, то преодолеваемая дистанция становится просто смехотворной — 40-80 километров, это во зависимости от поддерживаемой температуры и стиля езды.

Из всего выше сказанного можно сделать вполне логический вывод: зима — самое худшее время года для езды на электрокаре и если в нём нет такой острой необходимости, то зимой лучше отдать предпочтение общественному транспорту.

Подбор электродвигателя и карта эффективности

При подборе электродвигателей конструктор ориентируется на сведения из каталога производителя, в котором, как правило, содержится только информация о максимальной проектной мощности, номинальной (максимальной) частоте вращения ротора и КПД при этой скорости. Однако в действительности каждый электродвигатель характеризуется картой эффективности, показанной на рис. 1, которая получается расчетным методом, с использованием программ математического моделирования или при помощи комплексных испытаний двигателя с нагрузочными устройствами на базе генераторов или порошковых муфт (рис. 2).

Рис. 1. Карта эффективности электродвигателя

Построение карты эффективности имеет существенное преимущество — это отображение КПД двигателя на каждом режиме эксплуатации: скорости вращения и нагрузки, испытываемой валом.

Рис. 2. Нагрузочный стенд компании ООО «Мотохром» для испытания двигателей мощностью до 1,5 кВт

С учетом темпов развития транспорта на электрической тяге предъявляются повышенные требования к гибкому режиму работы их электродвигателей, в отличие от их использования до настоящего момента, как правило, в «вентиляторном» варианте (в том числе для привода насосов), когда мотор работает при одной определенной нагрузке и скорости вращения.

Электродвигатель для электротранспорта характеризуется:

  • Эксплуатацией в широком диапазоне частот вращения и нагрузки: езда с разной скоростью, езда в горку/с горки, по разным дорожным покрытиям.
  • Требованиями к высокому КПД, который напрямую определяет важнейшую характеристику транспорта — запас хода между полными зарядами аккумуляторов.
  • Работой в паре с ведущим рабочим узлом (пропеллером/крыльчаткой/колесом), который также имеет свою зависимость «скорость–КПД».
  • Эксплуатацией от аккумуляторной батареи, напряжение которой падает при разрядке и под высокой нагрузкой, что приводит к снижению максимальной скорости работы двигателя и возрастанию рабочих токов.
  • Снижением максимальных рабочих оборотов двигателя под нагрузкой.

Таким образом, при создании современных электротранспортных средств, для качественной разработки или подбора двигателя, необходимо иметь его карту эффективности. Карта понадобится и при проектировании движителя, о чем будет рассказано в следующем разделе.

Особенности кузова электрического автомобиля

Как должен выглядеть современный электромобиль? Очень интересный вопрос, на который кстати, имеется множество ответов. Дизайнеры, как правило, стараются выделить «электрички» из общего потока однотипных транспортных средств оснащённых ДВС, придавая своим творениям футуристический, смелый и даже диковинный образ. Этим стилисты хотят подчеркнуть то обстоятельство, что их разработка тесно связана с будущим. Но в то же время, имеет место и масса электрокаров, которые внешне можно легко спутать с традиционными машинами, к которым все привыкли с детства. Кроме того, производитель, дабы снизить затраты на производство своей продукции, часто идёт более рациональным путём: кузов не требующий глобальных переделок, просто берётся от «старшего брата» с двигателем внутреннего сгорания, поэтому внешне, обе модификации практически идентичны.

При создании электромобиля с нуля, особое внимание уделяется аэродинамическим свойствам его кузова и делается это по той причине, что автомобиль с низким сопротивлением воздушным массам, как и в случае с обыкновенными авто, будет затрачивать меньше энергии. Однако в случае с электрической машиной, это намного важнее, так как современные электрокары не могут на данный момент похвастать внушительным пробегом на одном заряде

Есть конечно и исключения, но их не много и всё равно они грандиозно проигрывают автомобилям с ДВС.

Вот пример: всенародно любимый Форд Фокус работающий на бензине, сподобился проехать на полном баке 1789 километров, в то время как элитный электрокар Tesla Model S, может протянуть на полном заряде всего 500 километров. А знаете, сколько пройдёт электрическая вариация Ford Focus Electric? 185 километров, всего-навсего! Как думаете, для кого показатель аэродинамического сопротивление окажется критичней? Думается, после таких технических характеристик, всем, итак, понятно, почему разработчики борются за каждый лишний километр пробега электромобиля любыми способами.

Принцип действия

Если в привычном нам ДВС коленвал вращается благодаря энергии расширяющихся газов, которые толкают поршень, то вал электродвигателя вращается благодаря явлению магнитной индукции – силовым полям, которые возникают около проводников с электрическим током. Чтобы сделать эти поля сильными и управляемыми, проводники собраны в обмотки, размещенные на статоре (неподвижная часть электромотора) и роторе (он же якорь, подвижная, вращающаяся часть).

Упрощенно говоря, при подаче напряжения на клеммы двигателя на его статоре и роторе возникают магнитные поля. Они отталкиваются друг от друга, заставляя ротор смещаться относительно статора – проворачиваться. Благодаря наличию коллектора (об этом ниже) или переменному току (и об этом ниже), поле одной из обмоток – ротора или статора – также начинается вращаться, “догоняя” второе из полей. Поэтому ротор вращается до тех пор, пока не будет отключена одна из обмоток и вокруг нее не исчезнет магнитное поле.

Двигатель переменного тока устроен очень похоже. Но в автомобилях “переменка” используется только в тяговых электродвигателях

Моторы для электрокаров


Существует большое количество разных разработок электрических моторов, которые отличаются между собой по множеству параметров. Иногда эти отличия весьма разительны.

Есть разделение по принципу работы:

  • По типу тока – переменный, постоянный или гибридный. Они, в свою очередь, могут разделяться на такие типы:
    • синхронный;
    • асинхронный;
    • шаговые и сервоприводы – как правило, используются в промышленных станках для точного позиционирования рабочего инструмента.
    • коллекторный и безколлекторный.
  • Мотор-колесо.

Каждый из этих приводов имеет свои особенности, которые определяют область применения. Поэтому давайте рассмотрим их подробнее.

Отличия по типу тока

Как мы знаем, существует два типа тока: переменный и постоянный.

По сути, такие моторы работают по схожим принципам: все отличия заключаются в способе питания привода. А он, в свою очередь, определяет некоторые особенности:

Электродвигатель постоянного тока имеет возможность более плавного и точного регулирования оборотов

А еще более высокий КПД, что очень важно в автомобилях. Но такой тип привода имеет и более высокую стоимость

Конструктивная особенность в том, что обмотка находится на роторе (он же называется якорем), который является подвижной вращающейся частью.


Двигатель переменного тока устроен так: обмотка мотора расположена на статоре. Причем между статором и ротором есть воздушный зазор, величина которого определяет другие дополнительные особенности привода. По большей части эти устройства нашли  признание благодаря весьма простой конструкции.

Они разделяются на два типа:

  • Однофазный привод не имеет начального пускового момента, поэтому по большей части используется в бытовых приборах. Направление вращения определяется внешними силами в момент запуска.
  • Трехфазные разделяются на два подвида:
    • с короткозамкнутым ротором;
    • С фазным ротором.

Именно трехфазные электроприводы могут быть синхронными и асинхронными. Как раз асинхронный мотор с короткозамкнутым ротором получил наибольшее распространение.

Суть универсальных приводов заключается в том, что вся работа контролируется платой управления. Такие двигатели называются ЕС (англ. electronically communicated). Ротор такого привода имеет постоянные магниты, а статор оснащен набором неподвижных катушек. Подключение осуществляется при помощи электронных схем: они могут переключать фазы в неподвижных катушках, что помогает поддерживать вращение ротора.

В нужный момент плата управления подключает подачу постоянного тока в определенной полярности. Это увеличивает точность электромотора. Благодаря такой конструкции и внешнему управлению двигатель ЕС не имеет ограниченной синхронной скорости вращения.

Особенности мотора-колесо


Мотор-колесо уже давно известен, однако не получал применение в автомобилях в силу некоторых ограничений того времени. Относительно недавно была применена новая технология пусковой обмотки, благодаря чему получилось достичь высокого пускового момента.

Современное мотор-колесо для электромобиля имеет несколько преимуществ:

  • Устойчивость к перепадам температур.
  • Простота и дешевизна в производстве (сборке).
  • Низкий уровень шума при работе и малый вес.
  • Надежность и долговечность.
  • Простота в обслуживании.

По большей части это электродвигатели российского производства, так как изначально они были придуманы в РФ ученым Дуюновым, затем модернизированы.

Мотор-колесо состоит из тех же компонентов, что и обычный электродвигатель:

  • ротор с магнитами;
  • статор с катушками.

На статор подается электричество, которое при помощи катушек создает магнитное поле, воздействующее на магниты ротора, заставляя их вращаться. При этом все компоненты спрятаны внутри колеса.

Внутри ближе к центру оси располагается неподвижный статор с множеством катушек. Вокруг него подвижная часть – ротор с магнитами. Это традиционное расположение, но существуют варианты и с обратным порядком, когда вращающаяся часть находится внутри, а вокруг ротора располагается неподвижный статор. Такая конструкция имеет определенные преимущества, но реализовать ее технически сложнее.

Устройство электромобиля и принцип его работы

Устройство электромобиля не содержит в себе никаких тайн и сложностей, так как основывается на общеизвестных физических и технических принципах. В целом, конструкция такой машины в области ходовой части, кузова, управления может совсем не отличаться от классического транспорта. Главное отличие состоит именно в моторе, который работает не на жидком дизельном топливе или бензине, а на генерируемом электрическом токе.

Принцип работы электромобиля заключается в следующем. В нем задействован механизм электромагнитной индукции, который состоит в том, что при наличии переменного электрического тока в проводнике возникает магнитное поле, которое по закону Ампера выполняет отклоняющее действие. В моторе существуют два основных компонента: ротор и статор. Статор остается постоянно неподвижным и по нему пропускается электрический ток определенной частоты. Генерируемое в статоре магнитное поле действует на ротор и тот начинает вращаться. Получаемая механическая энергия используется для движения транспортного средства. Скорость движка прямо пропорциональна частоте тока и количеству установленных магнитных полюсов.

В целом, устройство электромобиля достаточно простое, но требует очень аккуратного и точного исполнения. Ток для питания статора генерируется установленными на борту батареями. В зависимости от модели машины, батареи могут иметь разную емкость, конструкцию, особенности используемых механизмов работы.

Дополнительные узлы

Электронная составляющая современных электрокаров развита по полной программе, ведь на ней лежит большая ответственность. Она должна обеспечивать слаженную работу всех датчиков и систем, эффективно отслеживать заряд аккумуляторной батареи, дабы электрокар просто не остановился в самый неподходящий момент прямо посредине дороги, да много чего ещё делает умная и сложная электроника.

Основное, что здесь отличает электрокар от обычной машины — зарядное устройство, предназначенное для того, чтобы была возможность заряжать «электричку» от бытовой розетки. Естественно, как и у обычных авто, на борту электрических имеются осветительные приборы и как правило, максимально энергоэффективные, сами понимаете, для электрокара экономия электроэнергии, одна из первостепенных задач, ведь каждый километр пробега на вес золота. Комфорт в салоне обеспечивает такое же оборудование, как и в стандартных машинах: электропакет, кондиционер, электрический усилитель рулевого управления, аудиосистема и т. д.

Также на электрической машине может быть установлено такое интересное приспособление, как имитатор звука работы двигателя внутреннего сгорания. Изобретение скажем так действительно полезное, ведь электромобили настолько тихие при движении, особенно на низких скоростях, что пешеход может их легко не заметить, создав тем самым аварийную ситуацию.

Тяговые электродвигатели

Тяговые электродвигатели (ТЭД) классифицируются по назначению, конструктивному исполнению, по приводу на ось, способу питания электроэнергией и роду тока, режиму работы, способу охлаждения, степени защиты, климатическому исполнению. Отличие ТЭД от общепромышленных заключается в предельной интенсивности использования электротехнических материалов. Эти требования вызваны работой двигателей в ограниченных габаритах, при низких весовых показателях и высокой переменной механической и электрической нагрузке на конструкции, в условиях повышенного попадания вовнутрь пыли и влаги (в том числе с образованием инея и при низких температурах), а также длительным сроком службы. На условия эксплуатации ТЭД на ж.-д. транспорте РФ разработаны
ГОСТ 2582-81 и ГОСТ 15150-69, по которым допускаются одиночные удары с ускорением до 280 м/с2 при опорно-осевом подвешивании двигателя, работа при температуре окружающего воздуха от минус 50 «С (иногда от минус 60 °С) до плюс 40 °С. При работе в зоне умеренного или умеренно-холодного климата
регламентирована относительная влажность воздуха — 80%, среднегодовая абсолютная влажность -11 г-м2; допустима эксплуатация на высоте 1200 м — иногда до 1400 м от уровня моря; срок службы 25-30 лет. Резкое изменение механической нагрузки, температуры и влажности провоцирует образование трещин
в конструкциях, изоляционных материалах, антикоррозионном покрытии.

ТЭД может, преобразуя электрическую энергию в механическую, приводить во вращение одну ось — индивидуальный привод, несколько осей — групповой привод. ТЭД может работать в режиме реверсирования (изменять направление вращения), а также работать в режиме генератора (при электрическом торможении). По конструктивному исполнению различают коллекторные тяговые электродвигатели и бесколлекторные тяговые электродвигатели. В качестве ТЭД на специальном высокоскоростном электроподвижном составе используются линейные электродвигатели.

Устройство электродвигателя

На полюсах железного сердечника кольцевой формы, называемого статором электродвигателя, размещаются три обмотки, сети трехфазного тока расположенные одна относительно другой под углом 120°. Внутри сердечника укреплен на оси металлический цилиндр, называемый ротором электродвигателя. Если обмотки соединить между собой и подключить их к сети трехфазного тока, то общий магнитный поток, создаваемый тремя полюсами, окажется вращающимся. Суммарный магнитный поток в тоже время будет менять свое направление с изменением направления тока в обмотках статора (полюсов). При этом за один период изменения тока в обмотках магнитный поток сделает полный оборот. Вращающийся магнитный поток будет увлекать за собой цилиндр, и мы получим, таким образом асинхронный электродвигатель.

Обмотки статора могут быть соединены «звездой», однако вращающееся магнитное поле образуется и при соединении их «треугольником». Если поменять местами обмотки второй и третьей фаз, то магнитный поток изменит направление своего вращения на обратное. Такого же результата можно добиться, не меняя местами обмотки статора, а направляя ток второй фазы сети в третью фазу статора, а третью фазу сети — во вторую фазу статора. Таким образом, изменить направление вращения магнитного поля можно переключением двух любых фаз.

Асинхронный вид

Чаще всего используется трехфазный короткозамкнутый асинхронный двигатель. В этом случае круговое магнитное поле пронизывает короткозамкнутую роторную обмотку, из-за чего возникает ток индукции. Асинхронным его называют потому, что вращение ротора не равно вращению магнитного статора.

Применение типа распространено во многих отраслях техники, в бытовых приборах (холодильниках, стиральных машинах, кондиционерах), в промышленности, например в дерево- и металлообрабатывающей, а также в ткачестве. Они работают стабильнее других видов, стоят дешевле и просты в эксплуатации.

В заключение

Новые разработки двигателей для электромобилей позволили достичь небывалых результатов:

  • Крутящий момент максимален сразу с момента запуска.
  • Нет трущихся деталей.
  • Малые размеры.
  • Надежность и долговечность.
  • Низкий уровень шума.
  • Исключено негативное влияние на экологию.
  • Широкий диапазон управления оборотами позволяет полностью убрать коробку переключения передач.

И это далеко не весь список достоинств. Однако двигатель для электрокара имеет два довольно существенных минуса:

  • Малая дальность пробега без подзарядки.
  • Нет оборудованных станций для заряда аккумуляторов.

Эти проблемы решаемы и минимизируются уже сегодня: разрабатываются новые технологии, позволяющие увеличить дальность пробега, создаются станции заряда электрокаров.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Мастер Юрий Меркулов
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: