Задача
Например, определим, будет ли пребывать в равновесии рычаг, изображенный на рисунке. На него действуют три силы (см. рис. 19). , и . Плечи сил равны , и .
Рис. 19. Рисунок к условию задачи 1
Чтобы рычаг пребывал в равновесии, сумма моментов сил, которые на него действуют, должен быть равен нулю.
На рычаг по условию действуют три силы: , и . Их плечи соответственно равны , и .
Направление вращения рычага по часовой стрелке будем считать положительным. В этом направлении рычаг вращает сила , ее момент равен:
Силы и вращают рычаг против часовой стрелки, их моменты запишем со знаком минус:
Осталось вычислить сумму моментов сил:
Суммарный момент не равен нулю, значит, тело не будет пребывать в равновесии. Суммарный момент положительный, значит, рычаг будет поворачиваться по часовой стрелке (в нашей задаче это положительное направление).
Что произойдет с рычагом дальше?
Мы решили задачу и получили результат: суммарный момент сил, действующих на рычаг, равен . Рычаг начнет поворачиваться. И при его повороте, если силы не изменят направление, будут изменяться плечи сил. Они будут уменьшаться, пока не станут равны нулю, когда рычаг повернется вертикально (см. рис. 20).
Рис. 20. Плечи сил равны нулю
А при дальнейшем повороте силы станут направлены так, чтобы вращать его в противоположном направлении. Поэтому, решив задачу, мы определили, в какую сторону начнет вращаться рычаг, не говоря о том, что будет происходить потом.
Гулять запрещено: что такое холостые обороты, и от чего они зависят
Если спросить автовладельца, что такое холостые обороты мотора, он наверняка ответит, что это режим, в котором мотор работает без нагрузки, и будет полностью прав. Многие даже смогут точно назвать правильную величину оборотов для их автомобилей. Но почему эти обороты именно такие? Почему не больше, не меньше, почему они изменяются, как и для чего поддерживаются? Сегодня мы попробуем в этом разобраться.
Как всё начиналось
Н а первых моторах не существовало даже самого понятия холостых оборотов. Частота рабочих и холостых оборотов практически совпадала, а рабочий диапазон двигателя был крайне мал (приблизительно всего от 250 до 450 оборотов в минуту). Ну а куда деваться: меньше нельзя, выше не крутится… Фитильные карбюраторы имели весьма небольшой рабочий диапазон и при малом потоке смеси сильно «переливали». Фактически их настраивали только на рабочие обороты.
Ситуация поменялась примерно к 1915 году. Появление на Packard Twin Six настоящего карбюратора с жиклерами и управления опережением зажигания позволило решить две задачи. Во-первых, значительно увеличить мощность, увеличив рабочие обороты до 3000 в минуту, а во-вторых, снизить устойчивые обороты за счет введения специальной системы смесеобразования на малых оборотах. Иными словами, системы холостого хода.
Под капотом Packard Twin Six Town Car ‘1916
Все более поздние конструкции карбюраторов уже предусматривали регулировку и настройку смесеобразования на холостых оборотах, часто используя для этого режима отдельные дозирующие системы. Конечно, экология и даже ресурс для тех конструкций не были определяющими факторами, но моторы просто не могли работать на оборотах ниже тех, на которых мог создавать смесь карбюратор. Но затем система стала значительно сложнее.
Зачем нужны холостые обороты?
Пока мотор заглушен, никакого крутящего момента он, разумеется, не создаёт. Но и при работающем моторе мощность растет исключительно с ростом оборотов, а крутящий момент имеет пик в области средних или высоких оборотов (на наддувных двигателях момент появляется раньше, но тоже далеко не с нуля).
Чтобы нагрузить мотор полезной нагрузкой, нужно, чтобы он уже устойчиво крутился и был готов создавать крутящий момент. Иначе он просто заглохнет. Простите, что так сложно объясняю простую вещь, но это крайне важный для понимания дальнейшего момент.
Нагрузить ДВС можно только если он уже работает на устойчивых и достаточных для восприятия нагрузки оборотах. Никаких способов обойти это ограничение нет. Можно только избежать этой проблемы, используя дополнительный двигатель, который будет работать вместо ДВС до достижения тем рабочих оборотов. Например, такую функцию выполняет электромотор на гибридах или пневматический стартер с избыточной мощностью.
Все обороты выше холостых — рабочие. Ниже начинается зона пусковых оборотов, на которых двигатель не переносит нагрузку по тем или иным причинам. Для большинства моторов легковых автомобилей холостые обороты составляют 500-900 оборотов в минуту, что не так уж мало. В случае использования АКПП можно немного «схитрить» и установить холостые обороты без нагрузки со стороны трансмиссии ниже, повышая их только при включении режима «Drive» в коробке.
Примеры решения задач
Задание. Какова мощность (P(t)), развиваемая силой, если она действует на тело, которое имеет массу m и под воздействием приложенной силы движется поступательно. Сила описывается законом: $F(t)=2 t \cdot \bar+3 t^ \bar$
Решение. В качестве основы для решения задачи используем формулу для мощности вида:
Из второго закона Ньютона мы имеем:
$$F=m a \rightarrow a=\frac; v=\int a d t=\int \fracd t=\frac \int F d t(1.2)$$
В выражение (2.2) подставим уравнение, заданное в условии задачи для F(t), имеем:
$$v=\frac \int\left(2 t \cdot \bar+3 t^ \bar\right) d t=\frac\left(t^ \cdot \bar
+t^ \bar\right)(1.3)$$
Подставим выражение для скорости из (1.3) в (1.1), получим:
$$P=\left(2 t \cdot \bar+3 t^ \bar\right) \frac\left(t^ \cdot \bar
+t^ \bar\right)=\frac\left(2 t^+3 t^\right)$$
Ответ. $P=\frac\left(2 t^+3 t^\right)$
Формула мощности не по зубам? Тебе ответит эксперт через 10 минут!
Задание. Какова мгновенная мощность силы тяжести на высоте h/2. если камень массы m падает с высоты h. Сопротивление воздуха не учитывать.
Решение. Сделаем рисунок.
В качестве основы для решения задачи используем формулу для мгновенной мощности вида:
Сила, действующая на тело – сила тяжести. Она направлена по оси Y, выражение для ее проекции на ось Y запишем как:
В начальный момент времени тело имело скорость равную нулю, тогда скорость тела в проекции на ось Y можно вычислить, используя выражение:
Найдем момент времени, в который тело окажется на половине высоты (y=h/2), применим уравнение, которое описывает равноускоренное движение (из начальных условий y=0, v=0):
Используем выражения (2.2), (2.3), (2.4) подставим в (2.1), получим искомую мгновенную мощность силы тяжести на половине пути свободно падающего тела:
Ответ. $P=m \sqrt h>$
Источник
Причины высоких оборотов на инжекторе
На инжекторе причины, из-за которых повышаются обороты, можно разграничить на:
- связанные со сбоями в работе электроники;
- связанные с механическими неполадками.
В первом случае барахлят датчики или контроллеры. При неисправностях такого рода лучше всего обратиться к помощи специалистов.
Дроссельная заслонка
Если причина кроется в неполноценном функционировании дроссельной заслонки (в большинстве случаев, возникает ее заклинивание), происходит следующее:
- объем воздуха, поступающего на цилиндры, непропорционально увеличивается;
- ЭБУ «затребует» больше топлива, чтобы сбалансировать смесь.
В итоге автомобиль не только будет съедать гораздо большее количество топлива, чем положено, но и может вовсе выйти из строя при постоянной «перегрузке» при повышенных оборотах на холостом ходу. Устранить неполадку поможет диагностика заслонки и, в зависимости от результатов диагностики, химическая чистка или замена.
Датчик температуры двигателя
Данное устройство считается подверженным частым выходам из строя, поскольку находится в эпицентре неизбежных температурных перепадов. Если было замечено, что при определенных исходных с мотором все в порядке, а датчик «шалит». Для диагностики придется покопаться в проводке.
При включенном зажигании нужно:
- снять данные по сопротивлению от контакта «А» к массе (точное правильное значение – 10Ом);
- снять данные по сопротивлению от массы к клемме «В» (если меньше 10 Ом – нужно бить тревогу;
- также снять данные по напряжению на клемме «В» в отношении массы (точное правильное значение – 5В).
Возможно, проблема с самим датчиком. Чтобы это определить нужно вышеперечисленные показания по сопротивлению снять на остывшем и прогревшемся двигателе. При правильной работе показания не должны отличаться.
Датчик температуры двигателя
Датчик расхода воздуха
Масляная пленка, обволакивающая это устройство в ходе эксплуатации авто, со временем приводит к неполадкам элемента, измеряющего и подающего сигнал на ЭБУ о количестве поступающего воздуха (термоанемометр). В результате ЭБУ не имеет доступа к достоверной информации о количестве воздуха, и обороты начинают плавать. Но в первую очередь стоит осмотреть воздушный фильтр. Возможно, он просто забит и воздух не проходит свободно.
Впускной коллектор
Большие обороты могут быть связанными с подсасыванием воздуха. В данном узле могут существовать два вида неисправностей:
- деформации коллектора впуска;
- пробои или прогорание прокладки.
Если второй случай не так катастрофичен, то первый, скорее всего, приведет к обращению к услугам автосервиса, поскольку может потребоваться шлифовка. Неполадки будут обнаруживаться, в том числе, при прогреве «движка».
Другие причины
Иными, часто встречающимися причинами могут выступить следующие:
- заклинивание педали газа, что характерно как для мотора на инжекторе, так и для мотора на карбюраторе;
- на инжекторе из строя могут выходить датчики РХХ (регулятор холостого хода) и ДПДЗ (положения дроссельной заслонки): если закралось подозрение, что «грешат» именно они, потребуется проверка контактов;
- сбои ЭБУ, для проверки которого используются специальные компьютерные программы;
- генератор не снабжает нужной нормой тока, поэтому мотор начнет ускоряться в погоне за необходимым напряжением;
- для авто, имеющих турбокомпрессор, провокатором высоких оборотов в условиях холостого хода может стать его изношенность или разгерметизация прокладки роторного вала.
Если не получается с уверенностью идентифицировать причину повышения оборотов, благоразумнее обратиться к специалистам (особенно, в случае с инжектором).
Впускной коллектор с дроссельной заслонкой
Что такое мощность двигателя
Под мощностью следует понимать физическую величину, которая показывает совершаемую двигателем работу за единицу времени. При вращательном движении мощность определяется как произведение крутящего момента на угловую скорость вращения коленчатого вала. Обычно она указывается в лошадиных силах (л.с.), но встречается измерение и в кВт.
Существует несколько единиц измерения под названием «лошадиная сила», но, как правило, имеется в виду так называемая «метрическая лошадиная сила», которая равная ≈ 0,7354 кВт. А вот в США и Великобритании лошадиные силы, касающиеся автомобилей, приравнивают к 0,7456 кВт, то есть как 75 кгс*м/с, что приблизительно равно 1,0138 метрической.
- 1 кВт = 1,3596 л.с. (для метрического исчисления);
- 1 кВт = 1,3783 hp (английский стандарт);
- 1 кВт = 1,34048 л.с. (электрическая «лошадка»).
Если же конвертировать мощность 1 лошадиной силы в киловатты (в промышленности или энергетике), то она будет примерно равна 0,746 кВт. Понятие лошадиная сила не входит в международную систему измерений (СИ), поэтому измерение мощности в кВт будет более правильным.
Виды мощности
Для определения характеристик двигателя применяют такие понятия мощности как:
Индикаторной называют мощность, с которой газы давят на поршень. То есть, не учитываются никакие другие факторы, а только давление газов в момент их сгорания. Эффективная мощность, эта та сила, которая передается коленчатому валу и трансмиссии. Индикаторная будет пропорциональной литражу двигателя и среднему давлению газов на поршень.
Также есть параметр, называемый литровой мощность двигателя. Это соотношение объема двигателя к его максимальной мощности. Для бензиновых моторов литровая мощность составляет в среднем 30-45 кВт/л, а у дизельных – 10-15 кВт/л.
Как узнать мощность двигателя автомобиля
Конечно, значение можно посмотреть в документах на машину, но иногда требуется узнать мощность автомобиля, который подвергался тюнингу или давно находится в эксплуатации. В таких случаях не обойтись без динамометрического стенда. Его можно найти в специализированных организациях и на станциях техобслуживания. Колеса автомобиля помещаются между барабанами, создающими сопротивление вращению. Далее имитируется движение с разной нагрузкой. Компьютер сам определит мощность двигателя. Для более точного результата может понадобиться несколько попыток.
Мощность и крутящий момент ДВС
Для большинства рядовых автолюбителей понятие о показателе максимальной мощности и крутящего момента сводится к тому, что чем больше мощность, тем больше окажется и крутящего момента, а также более мощный двигатель всегда лучше. При этом чёткое понимание указанных характеристик мотора у многих отсутствует.
Смятение в этот лагерь также внесло растущее число «дизелистов», среди которых намного больше внимания уделяется именно кутящему моменту, а не мощности дизельного мотора. Также следует упомянуть и о турбомоторах, которые могут разгонять автомобиль намного быстрее, хотя мощность самого ДВС с наддувом заметно уступает атмосферным аналогам с намного более внушительным количеством «лошадей» под капотом. Получается, мощнее, но не всегда динамичнее и быстрее? Давайте разбираться, почему так происходит и чем «моментная» характеристика отличается от «мощностной».
Бирка (шильдик) электродвигателя
Осмотрев любой, за редким исключением, электродвигатель можно обнаружить табличку, привинченную на болты, саморезы или же заклепки. Что же написано на данном куске металла? Возьмем шильдик, заменив на нем заводской номер на название сайта.
Кстати, редко бывает, что табличка на электрооборудование находится в таком, почти идеальном состоянии. Часто данные выцветают или замазаны краской, ведь задача стоит для обслуживающего персонала покрасить двигатель, а не покрасить двигатель, оставив табличку нетронутой. Но, нам повезло. Пойдем по-порядку.
Первая строчка
— число фаз и тип тока (3
), заводской номер, частота сети, форма исполнения и монтажа, класс изоляции
Вторая строчка
— тип электродвигателя, косинус фи, возможные схемы соединения, номинальная частота вращения
Третья строчка
— возможные номинальные напряжения, номинальная мощность, IP — степень защиты электродвигателя, масса, режим работы электродвигателя (S1).
Четвертая строчка
— номинальные токи в зависимости от схемы включения обмоток, далее какому госту соответствует эд.
Рассмотрим отдельные параметры более подробно.
Мощность электродвигателя: полная, активная и на валу
Формула для расчета мощности трехфазного асинхронного двигателя:
S1 — полная мощность, потребляемая двигателем из сети
P1 — активная мощность, потребляемая электродвигателем из сети (указана на шильдике)
P — активная мощность на валу ЭД.
cosf — косинус фи, коэффициент мощности — угол сдвига фаз между активной (P) и полной мощностью (S).
В формулах выше, значение мощности получится в Вт, значение полной мощности в ВА. Чтобы перевести в киловатты необходимо получившееся значение разделить на тысячу. Значение тока и напряжения соответственно в формуле выше в амперах и вольтах.
I1 и U1 — линейные значения тока и напряжения, их еще называют междуфазными. Не стоит путать с фазными. Линейные — это АВ, ВС, СА (380); фазные — АО, ВО, СО (220). Если выразить формулы мощностей через фазные значения тока и напряжения, то вместо корня из трех вначале будет коэффициент 3. Этот коэффициент определяется наглядно через векторную диаграмму трехфазного напряжения.
Для двигателей постоянного тока формула будет просто произведение напряжения на зажимах двигателя умножить на ток, потребляемые двигателем из сети.
Потребляемая мощность p1 больше мощности на валу ЭД из-за потерь, которые возникают при преобразовании электрической энергии в механическую.
Звезда/Треугольник и 220/380, 380/660
Смотреть все значения по порядку как они идут через дробь. То есть написано на шильде Y/D ( треугольник/звезда), значит и токи, напряжения соответственно будут сначала для Y, а после дроби для звезды. Единственно, нюанс, что при 220/380 — треугольник будет 220, А при 380/660 — треугольник будет 380. То есть говорить, что 380 — это всегда звезда — неверно.
Расчет по производительности форсунок
Форсунки — это детали-распылители, которые обеспечивают подачу топлива в цилиндры ДВС. Характер работы форсунок напрямую влияет на формат функционирования двигателя, поэтому подсчитать мощность движка можно по производительности форсунок.
Для подсчетов используется следующая сложная формула:
- ПФ — это производительность 1 форсунки. Этот параметр обычно указывается в технической документации к двигателю (хотя в случае нового авто эти сведения можно узнать из бортового компьютера).
- КФ — это количество форсунок. Этот параметр можно также узнать из технической документации либо с помощью бортового компьютера.
- КЗ — коэффициент загруженности форсунок. Для большинства легковых автомобилей этот параметр равен 0,75-0,8.
- ТТ — тип топливной смеси. Для бензина высокой очистки этот коэффициент обычно равен 12-13.
- ТД — это тип двигателя. Для атмосферного движка этот параметр равен 0,4-0,5, для турбодвижка — 0,6-0,7.
Эта методика расчета является достаточно неточной, поскольку формула содержит множество поправочных коэффициентов, многие из которых не имеют точного цифрового выражения. Поэтому реальная мощность может отличаться от формульной на 10-15% (впрочем, это небольшая погрешность).
Работа и мощность
Если мы говорим о вращении, мощность выражается как вращающий момент (T), умноженный на частоту вращения (w).
Частота вращения объекта определяется измерением времени, за которое определённая точка вращающегося объекта совершит полный оборот. Обычно эта величина выражается в оборотах в минуту, т.е. мин-1 или об/мин. Например, если объект совершает 10 полных оборотов в минуту, это означает, что его частота вращения: 10 мин-1 или 10 об/мин.
Итак, частота вращения измеряется в оборотах в минуту, т.е. мин-1.
Приведем единицы измерения к общему виду.
Для наглядности возьмём разные электродвигатели, чтобы более подробно проанализировать соотношение между мощностью, вращающим моментом и частотой вращения. Несмотря на то, что вращающий момент и частота вращения электродвигателей сильно различаются, они могут иметь одинаковую мощность.
Например, предположим, что у нас 2-полюсный электродвигатель (с частотой вращения 3000 мин-1) и 4-полюсной электродвигатель (с частотой вращения 1500 мин-1). Мощность обоих электродвигателей 3,0 кВт, но их вращающие моменты отличаются.
Таким образом, вращающий момент 4-полюсного электродвигателя в два раза больше вращающего момента двухполюсного электродвигателя с той же мощностью.
Как образуется вращающий момент и частота вращения?
Теперь, после того, как мы изучили основы вращающего момента и скорости вращения, следует остановиться на том, как они создаются.
В электродвигателях переменного тока вращающий момент и частота вращения создаются в результате взаимодействия между ротором и вращающимся магнитным полем. Магнитное поле вокруг обмоток ротора будет стремиться к магнитному полю статора. В реальных рабочих условиях частота вращения ротора всегда отстаёт от магнитного поля. Таким образом, магнитное поле ротора пересекает магнитное поле статора и отстает от него и создаёт вращающий момент. Разницу в частоте вращения ротора и статора, которая измеряется в %, называют скоростью скольжения.
Скольжение является основным параметром электродвигателя, характеризующий его режим работы и нагрузку. Чем больше нагрузка, с которой должен работать электродвигатель, тем больше скольжение.
Помня о том, что было сказано выше, разберём ещё несколько формул. Вращающий момент индукционного электродвигателя зависит от силы магнитных полей ротора и статора, а также от фазового соотношения между этими полями. Это соотношение показано в следующей формуле:
Сила магнитного поля, в первую очередь, зависит от конструкции статора и материалов, из которых статор изготовлен. Однако напряжение и частота тока также играют важную роль. Отношение вращающих моментов пропорционально квадрату отношения напряжений, т.е. если подаваемое напряжение падает на 2%, вращающий момент, следовательно, уменьшается на 4%.
Как бортовой компьютер автомобиля рассчитывает расход топлива?
Вы когда-нибудь задумывались, а как компьютер машины рассчитывает расход топлива, который мы видим на приборной панели? Это имеет что-то общее со счетчиком на заправке, когда мы заливаем на бензоколонке топливо? Или этот метод расчетов похож на показания счетчиков воды в наших квартирах? На самом деле нет. Компьютер для вычисления расхода топлива использует внутренние алгоритмы путем сбора данных с различных датчиков в автомобиле. Так, например, компьютер получает данные о ширине импульса топлива в инжекторе (объем впрыска) и данные с датчика скорости, с датчика вращения коленвала, с датчика КПП и т. д. Далее по специальной формуле данные перемножаются с применением определенных коэффициентов.
Расход топлива на холостом ходу: и как его снизить?
Добрый день, уважаемые автолюбители! Я рад снова пообщаться на около автомобильную тематику со всеми, кто к ней небезразличен
Те, кто читал нас в прошлых выпусках, прекрасно знают, что мы уделили большое внимание вопросам, связанным с потреблением горючего автомобилем. В данном обзоре я хотел затронуть расход топлива на холостом ходу, как его узнать и что на него влияет
Так надо ли глушить двигатель при простоях
Итак, самый простой способ сэкономить топливо — это заглушить работающий двигатель. Если Вы думаете, что речь идет о каких-то каплях, то заблуждаетесь. Недаром, многие современные авто оснащаются сегодня системой под названием «старт-стоп», которая отключает часть или все цилиндры в то время, как машина ожидает в пробках или на городских светофорах. Однако не у всех автомобиль может похвастаться такой технической новинкой. А потом автолюбитель с удивлением отмечает, как увеличился расход на его машине и задает себе вопрос, почему так произошло…
Вот почему водители со стажем, желающие сэкономить на обслуживании, глушат мотор во всех случаях, если приходится простаивать более 10 секунд. Это такое среднее значение, при котором целесообразно задуматься, а не вылетает ли топливо из бензобака просто в трубу?! Особенно это касается тех случаев, когда транспортное средство остановилось в безопасном месте, не создавая ни помех другим участникам движения, ни аварийных ситуаций.
В каком случае потребление топлива будет выше
Существует и противоположное мнение, которое говорит о том, что при повторном запуске мотора мгновенный расход горючего будет большим, потому глушить и запускать повторно нерационально. Это верно, но лишь в том, что касается первых 5–10 секунд работы мотора. Потом Вы начинаете терять миллилитры за миллилитрами. Таким образом, если авто работает больше 10 секунд, оно начинает расходовать больше, чем если выключить зажигание, а при необходимости, включить его по новой. Потому я и писал выше про водителей со стажем и выработанные на протяжении опыта ими привычки.
К тому же все эти утверждения отнюдь не голословны. Многочисленные наблюдения позволяют говорить о том, что среднестатистический водитель ежедневно проводит 15–16 минут в автомобиле, двигатель которого функционирует на холостых оборотах, то есть, никуда не движется. Дальше — больше.
При расчете получается, что за год потери от такого нерационального расходования горючего могут выливаться уже в сумму от 4000 до 8000 рублей.
Конечно, при движении загородом такой способ экономии малоприменим, зато, когда Вы возвращаетесь в городской режим, то можете представить, сколько литров в час тратится необдуманно!
Как сэкономить на горючем зимой и в другие периоды года
Другая точка зрения, почему не стоит выключать зажигание, связана с тем, что для вторичного запуска потребуется кратковременный разряд аккумуляторной батареи. Но, если силовой агрегат теплый, то этот разряд и вовсе получается незначительным. А вот постоянная работа мотора без остановки, так или иначе, вызывает постепенный износ всех его отдельных составляющих, что напрямую влияет на ограничение его эксплуатационного ресурса.
Что еще ведет к повышенным тратам бензина? Опять же, многие автолюбители злоупотребляют прогревом мотора после долгой стоянки транспортного средства. Однако большинство современных моторов вовсе не требуют долгой работы на холостых, чтобы достичь своих оптимальных кондиций. К тому же есть другая более полезная практика: после краткосрочного прогрева можно начать движение, но так, чтобы обороты первое время были небольшими, то есть, не нужно разгонять движок до 3000 об/мин и выше.
Таким способом гораздо быстрее удается достичь прогрева до рабочих температур отдельных узлов двигателя, а также катализаторов, что необходимо для экономичной и эффективной работы силового агрегата.
Особенно увеличивается мгновенный и другие расходы горючего на холостых оборотах в зимний период эксплуатации. Связано это не только со снижением температуры воздуха, но также заносами и гололедом, длительными интервалами прогрева. И если средний показатель расхода горючего обычно колеблется от 0,8 до 1,1 литра в зависимости от марки автомобиля, то зимой он может возрастать еще на 10–20%. Зато летом на него оказывает влияние, работающий кондиционер — нагрузка на мотор возрастает, из-за того, что ему дополнительно приходится крутить привод его компрессора.
Расчет мощности по массе и времени разгона до сотни
Еще один интересный способ как рассчитать мощность двигателя на любом виде топлива, будь-то бензин, дизель или газ – по динамике разгона. Для этого используя вес автомобиля (включая пилота) и время разгона до 100 км. А чтобы Формула подсчета мощности была максимально приближена к истине нужно учесть также потери на пробуксовку в зависимости от типа привода и быстроту реакции разных коробок передач. Приблизительные потери при старте для переднеприводных составит 0,5 сек. и 0,3-0,4 у заднеприводных авто.
Используя этот калькулятор мощности ДВС, который поможет определить мощность двигателя исходя из динамики разгона и массы, вы сможете быстро и достаточно точно узнать мощь своего железного коня не вникая в технические характеристики.
Какой расход бензина и дизеля на холостых оборотах в час? Список факторов
Часто водители интересуются, каков расход бензина и дизеля на холостых оборотах в час. Ведь довольно часто приходится держать работающий автомобиль именно в таком режиме. Зимой, это прогрев перед поездкой. Также не стоит забывать об остановках на светофорах и в пробках. Все это заставляет задуматься о том, насколько экономичен мотор вашего авто при работе в холостом режиме. Причем этим вопросом задаются владельцы любых моделей машин, вне зависимости от заявленного производителем расхода топлива. Знание среднего расхода позволит более точно рассчитывать количество горючего при заправке. Каков расход бензина и дизеля на холостых оборотах в час, зависит от нескольких факторов
Важно учитывать тип топлива, особенности конкретного двигателя, исправность всех элементов силового агрегата. Только учет всех этих нюансов позволит вам приблизительно рассчитать потребление топлива
Как же правильно рассчитать расход горючего? Производители заявляют, что расход топлива равен потреблению на 10 км пути в городском режиме движения.
Посмотрим примеры
- Hyundai Accent IV (2010) с объемом двигателя 1,4 потребляет в городском режиме – 7,6 литра на сотню. Соответственно, на холостом ходу он будет потреблять 0,76 л./час;
Обратите внимание
, что расход на холостых оборотах не зависит от типа трансмиссии. Больше на него влияет наличие навесного оборудования. Одна и та же модель с кондиционером будет потреблять топлива чуть больше, также сказывается наличие гидроусилителя. В результате, на практике показатель будет отличаться от действительности. Также может сказываться наличие износа двигателя.