Система охлаждения двигателя внутреннего сгорания: как это работает

Плюсы и минусы

Система жидкостного охлаждения широко применяется в автомобилестроении. При этом более эффективной системы пока и не разработано. Главный плюс — равномерный отвод тепла от силового агрегата, чего сложно добиться при более дешевом воздушном охлаждении. Такая особенность поясняется низкой теплопроводностью и завышенной теплоемкостью ОЖ (если сравнивать с воздухом). Кроме этого, применение жидкостной системы позволяет снизить уровень шума при работе мотора за счет утолщения стенок силового агрегата. Кроме этого, система обладает некой инерционностью, что не дает мотору быстро терять температуру после отключения зажигания. При этом прогретая жидкость применяется не только для ускорения нагрева самого мотора, но и обеспечения комфортной температуры в салоне.

Несмотря на преимущества, у жидкостной системы охлаждения есть и ряд негативных моментов. Главный из них заключается в работе системы под постоянным давлением, что повышает риски потери герметичности и появления течи в системе. Ситуация усложняется и тем, что система работает по принципу нагрев-охлаждение, что пагубно влияет на состояние соединяющих узлы системы патрубков. По этой причине стоит время от времени проверять состояние соединяющих элементов и не допускать их выхода из строя. Также стоит отметить и взаимосвязь всех элементов. Если какой-то из них выходит из строя (к примеру, термостат), то двигатель может закипеть.

Основные элементы

Система охлаждения двигателя содержит следующие элементы:

  • Рубашка охлаждения или «водяная рубашка». Представляет собой систему каналов проходящих в блоке цилиндров.
  • Радиатор охлаждения — устройство для охлаждения самой жидкости. Состоит из каналов изогнутых труб и металлических рёбер для лучшей теплоотдачи. Охлаждение происходит как благодаря встречному потоку воздуха, так и внутренним вентилятором.
  • Вентилятор. Элемент системы охлаждения, предназначенный для усиления потока воздуха. На современных автомобилях он включается только при срабатывании температурного датчика, когда радиатор неспособен полноценно охладить жидкость встречным потоком воздуха. В старых моделях автомобилей вентилятор работает постоянно. Вращение на него передаётся от коленчатого вала через ременной привод.
  • Насос или помпа. Обеспечивает циркуляцию охлаждающей жидкости по каналам системы. Приводится в действие с помощью ременного или шестерёнчатого привода от коленчатого вала. Как правило, мощные двигателя с прямым впрыском топлива комплектуются дополнительным насосом.
  • Термостат. Важнейшая деталь системы охлаждения, контролирующая циркуляцию по большому кругу охлаждения. Основной задачей является обеспечение нормального температурного режима при эксплуатации транспортного средства. Обычно установлен на стыке входного патрубка и рубашки охлаждения.
  • Расширительный бачок — ёмкость необходимая для сбора избытка охлаждающей жидкости возникающего в процессе её нагревания.
  • Радиатор отопления или печка. По своему устройству похож на радиатор охлаждения в меньшем размере. Однако, используется исключительно для обогрева салона автомобиля в зимний период и непосредственной роли в охлаждении ДВС не играет.

Виды систем охлаждения двигателя в автомобиле

На сегодняшний день самыми распространенными являются следующие типы охлаждения:

  • воздушная;
  • жидкостная.

Рассмотрим их особенности, преимущества и недостатки.

Воздушное охлаждение

Воздушная система встречается крайне редко. Это обусловлено спецификой этого вида охлаждения и меньшей эффективностью по сравнению с жидкостной. Ее можно встретить на старых моделях ЗАЗ, малолитражных автомобилях ОКА, а также грузовых машинах чешского производства Tatra. Кроме того, она применяется на подавляющем большинстве мопедов, мотороллеров и мотоциклов.

Конструкция несколько отличается от жидкостной. В ней отсутствует радиатор. Вместо него имеется специальная рубашка цилиндроблока, снабженная направляющими ребрами. Они обеспечивают максимально эффективное омывание цилиндров воздухом. Его нагнетает вентилятор. Чтобы потоки воздуха не рассеивались и имели постоянную силу, цилиндры скрыты специальным кожухом.

Таким образом, в воздушной системе цилиндроблок охлаждается воздухом без посредничества жидкости.

К достоинствам этого типа охлаждения можно отнести:

  • простоту конструкции (и, как следствие, техобслуживания);
  • малый вес;
  • надежность.

Однако она имеет и недостатки:

  • меньшую эффективность по сравнению с жидкостной;
  • высокий уровень шума при запущенном двигателе;
  • невозможность использования тепла мотора для обогрева авто;
  • большую потерю мощности, которая уходит на вращение вентилятора;
  • чувствительность к перепадам температуры окружающей среды (в мороз запустить мотор гораздо сложнее).

Как можно заметить, минусы в данном случае перевешивают плюсы. Это и обусловило столь малое распространение охлаждения двигателя внутреннего сгорания этой разновидности.

Жидкостное охлаждение

Устройство и принцип действия жидкостной охладительной системы ДВС более подробно описаны выше. Здесь стоит сказать о ее преимуществах и недостатках.

К числу плюсов можно отнести следующие:

  • легкий пуск в мороз;
  • равномерное охлаждение;
  • возможность использование блочной конструкции цилиндровой группы, которая делает компоновку мотора более простой;
  • малый уровень шума при работе ДВС;
  • отсутствие механической нагрузки в деталях узла;
  • меньшая потеря мощности.

А это – недостатки подобного типа систем:

  • более сложная конструкция (а значит, и техническое обслуживание);
  • необходимость периодической смены жидкости;
  • возможность подтекания или замерзания охладителя, которые нарушают общую работу системы;
  • увеличенный коррозийный износ, возникающий вследствие постоянного контакта металлических элементов конструкции с жидкостью.

системы охлаждения авто

Виды систем охлаждения

Всего на двигателях внутреннего сгорания используется два типа охлаждения – воздушное и жидкостное.

Воздушная система охлаждения, ее конструкция, недостатки

Устройство воздушной системы охлаждения двигателя

В силу ряда недостатков на автомобильном транспорте воздушная система широкого распространения не получила, хотя конструктивно она значительно проще, чем жидкостная.

Основным ее элементом являются ребра охлаждения на цилиндрах.

Тепло, выделяемое от цилиндров, распространялось на эти ребра, а проходящий через них поток воздуха осуществлял его отвод. Для создания потока дополнительно конструкция системы могла включать турбину – специальную крыльчатку, с приводом от коленчатого вала и рукав, которым создаваемый поток воздуха направлялся на цилиндры. Это  вся конструкция воздушной системы.

На автотранспорте воздушная система практически не используется, потому что:

  • невозможна регулировка температурного режима (зимой мотор не выходил на необходимую температуру, а летом – очень быстро перегревался);
  • чтобы обеспечить равномерное распределение потока воздуха, каждый цилиндр стоял отдельно;
  • во время стоянки с заведенным мотором даже при наличии турбины поток воздуха очень слабый, что приводит к быстрому перегреву;
  • невозможно организовать обогрев салона.

Работа системы охлаждения

Циркуляцию жидкости в системе охлаждения осуществляют по двум кругам: малому и большому.

По малому кругу жидкость циркулирует при пуске холодною двигателя, обеспечивая его быстрый прогрев в такой последовательности: жидкостной насос — распределительные трубы — рубашка охлаждения блока цилиндров — рубашка охлаждения головки блока цилиндров — верхний патрубок термостата (клапан закрыт) — перепускной шланг приемная полость жидкостного насоса.

По большому кругу жидкость циркулирует при прогретом двигателе: жидкостной насос (как и по малому кругу) — термостат (клапан открыт) — резиновый шланг — патрубок радиатора — верхний бачок радиатора — сердцевина радиатора — нижний бачок радиатора — патрубок — шланги — приемная полость жидкостного насоса.

Переохлаждение двигателя сопровождается ростом механических потерь из-за повышения вязкости масла, ухудшением процессов смесеобразования и сгорания, следствием чего является повышенный расход топлива. Конденсация паров воды в картерной полости холодного двигателя и на стенках цилиндров приводит к коррозии. В отрабатавших газах повышается содержание углеводородов не сгоревшего топлива и высокотоксичных альдегидных соединений.Принудительный отвод теплоты от деталей двигателя осуществляется с помощью жидкости или воздуха, в связи с чем различают двигатели жидкостного и воздушного охлаждения.

Радиатор является теплообменником системы охлаждения, где поступающая из двигателя жидкость передаст теплоту потоку воздуха.

Радиатор состоит из верхнего и нижнего бачков, соединенных между собой трубками, образующими его охлаждающую решетку (сердцевину ра­диатора). Верхний бачок радиатора имеет наливную горловину с пробкой, а нижний — сливной кран. В наливную горловину впаяна пароотводная трубка, соединенная с расширительным бачком. Пароотводная трубка за­глублена в радиатор, где отводимые пары конденсируются. К верхнему и нижнему бачкам припаяны боковые стойки. Стойки и пластина образуют каркас радиатора. Сердцевина радиатора состоит из нескольких рядов тру­бок, впаянных в верхний и нижний бачки. К трубкам крепятся гонкие ох­лаждающие пластины или гофрированные ленты, изготовленные из лату­ки, алюминия или красной меди.

Пробка заливной горловины в закрытых системах жидкостного охлажде­ния имеет два предохранительных клапана с уплотнительными резиновы­ми прокладками и пружинами. Паровой клапан регулируют на избыточное давление (0,145—0,160 МПа), воздушный клапан открывается при падении давленияв системе против атмосферного не более чем на 0,01 МПа.

При нормальном функционировании клапанов система охлаждения только кратковременно может сообщаться с окружающей средой или поло­стью расширительного бачка.

Жалюзи устанавливаются перед радиатором, с их помощью регулирует­ся количество воздуха, проходящего через сердцевину радиатора. Жалюзи изготовляются в виде набора вертикальных иди горизонтальных пластин — створок из оцинкованного железа, которые объединены общей рамкой и снабжены шарнирным устройством, обеспечивающим одновременный или групповой поворот их вокруг своей оси. Жалюзи прикрепляют к каркасу радиатора или к его наружной облицовке. Управление створками осущест­вляется вручную или с помощью устройства с термостатом.

Жидкостной насос создаст в системе охлаждения принудительную цир­куляцию жидкости. Применяют одноступенчатые жидкостные насосы цен­тробежного типа. Привод насоса, как правило, работает от шкива коленча­того вала посредством клиноременной передачи.

Жидкостной насос состоит из корпуса, вала привода с крыльчаткой, ступицы для крепления шкива привода, самоподжимной уплотняющей манжеты, двух латунных обойм, резиновой манжеты» уплотняющей шайбы ипружинного кольца. Вал насоса вращается на двух шарикоподшипниках.

Центробежные насосы одноступенчатого типа, рассчитанные на давле­ние и 0,04 —0,1 МПа, отличаются компактностью и обеспечивают доста­точную подачу жидкости при сравнительно больших зазорах между крыль­чаткой и стенками корпуса.

Вентилятор служит для создания воздушного потока, проходящего че­рез сердцевину радиатора, для охлаждения жидкости, протекающей по трубкам.

Обслуживание системы охлаждения гарантия нормальной работы вашего двигателя.

Можно ли сделать кондиционер из старого холодильника

Абсолютно утопическая идея. Все материалы, опубликованные в русскоязычном интернете, описывают один и тот же видеоролик, где человек пытается из двух холодильников соорудить морозильную камеру для грибов. Причем результат этого действа неизвестен, потому что видеоматериал неполный. Давайте представим, как это должно выглядеть:

  1. Из холодильника аккуратно вырезаются оба теплообменника без отключения от компрессора, иначе фреон улетучится и вам придется платить за заправку.
  2. Компрессор с конденсатором выносится за пределы помещения, а испаритель (бывшая морозилка) устанавливается в комнате. К ней нужно приладить вентилятор для обдува.
  3. Штатный датчик и блок управления, настроенный на температуру отключения компрессора минус 3—6 °С, придется выбросить и заменить другими элементами, подключив агрегаты через реле. Иначе компрессор никогда не остановится и сломается через 100—200 часов непрерывной работы.


Организация охлаждения комнаты с помощью двух холодильников, встроенных в стену. Результаты работы неизвестны. Давайте отбросим все технические тонкости (не такой режим работы, другая марка фреона и так далее) и представим, что вам удалось собрать эту схему. Максимальная холодильная мощность подобных агрегатов составляет не более 400 Вт или 0.4 кВт. Грубый расчет показывает, что этого хватит для комнаты площадью 4 м². Это в теории, а на практике выйдет еще меньше.

Вывод. Если вы относитесь к благородному племени энтузиастов и экспериментаторов, то можете попытаться сделать из холодильника кондиционер. Но труда вы затратите гораздо больше, чем получите холода.

Охлаждение отработавших газов

В связи с принятием новых более жестких норм предельно допустимого содержания вредных веществ в отработавших газах дизельных двигателей, объектом внимания специалистов становятся новые технологии по снижению ток­сичности. Одной из таких технологий является охлаждаемая система рециркуляции отработав­ших газов (EGR). Система рециркуляции отрабо­тавших газов размещается в области высокого давления двигателя. Часть отработавших газов отбирается из основного потока между блоком цилиндров и турбонагнетателем отработавших газов. Эти отработавшие газы охлаждаются охлаждающей жидкостью двигателя, а затем снова вводятся в поток свежего воздуха на выходе промежуточного охладителя. Система EGR состоит из клапана, регулирующего коли­чество рециркулирующих отработавших газов, выпускных трубопроводов и теплообменника, который подвергается воздействию очень вы­соких температурных нагрузок (например, в двигателях легковых автомобилей температура отработавших газов может достигать 450 °С, а в двигателях грузовиков — 700 °С), что требует применения термостойких материалов. (см. рис. «Схема системы рециркуляции охлаждаемых отработавших газов» )

Кроме того, материал должен обладать стой­костью к коррозии и иметь высокую механиче­скую прочность. Поэтому для этих целей при­меняются специальные нержавеющие стали.

Для достижения необходимой степени рециркуляции теплообменники должны обе­спечивать очень низкий перепад давления. Также должны быть приняты меры к пре­дотвращению их засорения. В конструкции охладителей отработавших газов применены пучки гладких или оребренных труб. Отрабо­тавшие газы проходят по трубкам, а охлаж­дающая жидкость циркулирует в рубашке охладителя.

Еще одним применением охладителей от­работавших газов является их предваритель­ное охлаждение на двигателях с искровым зажиганием. Предварительное охлаждение отработавших газов требуется для поддер­жания их температуры в пределах рабочего диапазона каталитических нейтрализаторов аккумуляторного типа.

РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:

Система охлаждения двигателя ВАЗ 2101

На автомобили ВАЗ 2101 производитель устанавливал два вида бензиновых двигателей — 2101 и 21011. Оба агрегата имели герметичную систему охлаждения жидкостного типа с принудительной циркуляцией хладагента.

Назначение системы охлаждения

Система охлаждения двигателя (СОД) предназначена не столько для снижения температуры силового агрегата в процессе работы, сколько для поддержания его нормального теплового режима. Дело в том, что добиться от мотора стабильной функциональности и оптимальных мощностных показателей можно только при условии его работы в определённых температурных рамках. Иными словами, двигатель должен быть горячим, но не перегреваться. Для силовой установки ВАЗ 2101 оптимальной считается температура 95–115оС. Кроме этого, система охлаждения используется для обогрева салона автомобиля в холодное время года и нагревания дроссельного узла карбюратора.

Видео: как работает система охлаждения двигателя

Основные параметры системы охлаждения ВАЗ 2101

Любая система охлаждения двигателя имеет четыре основных индивидуальных параметра, отклонение которых от нормативных значений может привести к выходу системы из строя. Эти параметры следующие:

  • оптимальная температура охлаждающей жидкости (ОЖ);
  • время прогрева двигателя до рабочей температуры;
  • оптимальное давление ОЖ;
  • объём ОЖ в системе.

Температура охлаждающей жидкости

Оптимальный температурный режим работы двигателя определяется:

  • типом потребляемого топлива;
  • объёмом цилиндров;
  • расчётной мощностью.

Для ВАЗ 2101 рабочей считается температура двигателя от 95 до 115оС. Несоответствие фактических показателей рекомендованным значениям является признаком нарушения температурного режима. Продолжать движение на автомобиле в этом случае не рекомендуется.

Время прогрева двигателя

Регламентированное производителем время прогрева двигателя ВАЗ 2101 до рабочей температуры составляет 4–7 мин в зависимости от времени года. За это время ОЖ должна нагреться как минимум до 95оС. В зависимости от степени износа деталей двигателя, типа и состава ОЖ и характеристик термостата возможно небольшое отклонение этого параметра (1–3 мин) в сторону увеличения.

Рабочее давление ОЖ

Величина давления ОЖ — важнейший показатель работоспособности СОД. Оно не только способствует принудительной циркуляции хладагента, но и предотвращает его закипание. Из курса физики известно, что температуру кипения жидкостей можно увеличить, повысив давление в закрытой системе. В обычных условиях ОЖ закипает при 120оС. В исправной же системе охлаждения ВАЗ 2101 под давлением в 1,3–1,5 атм антифриз закипит только при 140–145оС. Снижение давления ОЖ до атмосферного может привести к ухудшению или прекращению циркуляции жидкости и преждевременному её закипанию. В результате коммуникации системы охлаждения могут выйти из строя и привести к перегреву двигателя.

Объём ОЖ

Далеко не каждый владелец «копейки» знает, какой объем хладагента помещается в двигатель его машины. При замене жидкости, как правило, покупают четырёх- или пятилитровую канистру ОЖ, и этого обычно хватает. На самом же деле двигатель ВАЗ 2101 вмещает 9,85 л хладагента, а при замене он сливается не полностью. Поэтому при замене ОЖ нужно сливать её не только с главного радиатора, но и из блока цилиндров, а покупать следует сразу десятилитровую канистру.

Типы систем охлаждения

Существует три типа систем охлаждения двигателей внутреннего сгорания: воздушная, жидкостная и гибридная.

Термические двигатели для А. требуют охлаждения цилиндров. Только для слабых, велосипедных газолиновых двигателей достаточно воздушного охлаждения при помощи рубцов, прилитых к поверхности цилиндра; для более сильных необходима циркуляция воды помощью насоса между двойными стенками цилиндров, охлаждаемой в особом трубчатом приборе, помещаемом впереди А. и обдуваемом струей встречного воздуха.

Воздушное охлаждение

Рубашка цилиндра свободно обдувается воздухом, тем самым забирая большую часть тепла двигателя. Является самой простой, так как не требует сложных деталей и систем управления. Недостаток системы заключается в маленькой теплоёмкости воздуха, что не позволяет равномерно отводить от двигателя большое количество тепла и, соответственно, создавать компактные мощные силовые установки.

Примером машины с воздушным охлаждением может служит автомобиль ЗАЗ-965. Так как предполагалось, что советским автовладельцам придется обслуживать автомобиль самостоятельно (и с учётом дефицита запчастей), воздушное охлаждение оценивалось положительно и виделось весьма практичным в суровых зимних условиях (при низких температурах нет риска замерзания охлаждающей жидкости на стоянке). Кроме того, малая масса силового агрегата, его простота и разборная конструкция (съёмные цилиндры) позволяла отремонтировать автомобиль практически «в чистом поле». Однако такая конструкция системы охлаждения обусловила возникновение проблемы перегрева в жаркую погоду, которая особенно усугублялась в процессе износа двигателя, когда его оребрение покрывалось слоем масла и прилипшей к нему пыли. Следует отметить, что на автомобилях ЛуАЗ-967, где тот же двигатель работал с большей нагрузкой, но лучше обдувался набегающим потоком воздуха, его перегрев наблюдался редко.

Жидкостное охлаждение

Основная статья: Жидкостное охлаждение

Цилиндры двигателя охлаждаются жидкостью, после чего она возвращается в расширительный бачок. Является очень старым типом системы охлаждения, в настоящее время этот тип в автомобилестроении не используется, так как жидкость не успевает охладиться, поэтому двигатели, оснащённые этой системой охлаждения, не могут работать в течение длительного времени. Однако в двигателях речных и морских судов запас охлаждающей жидкости (забортной воды) не ограничен, что позволяет уменьшить вес силовой установки по сравнению с двигателями с гибридной системой охлаждения.

Гибридный тип

Сейчас гибридную систему называют жидкостной. Фактически она всё же гибридная, так как там тоже участвует воздух.

Система жидкостного охлаждения обычно включает следующие элементы:

  • двойные стенки цилиндров, пространство между которыми заполнено охлаждающей жидкостью (например, водой или антифризом);
  • теплообменник или радиатор, состоящий из трубок и полостей;
  • вентилятор, состоящий из ступицы и лопастей, при вращении которого обеспечивается прокачка воздуха между трубками радиатора;
  • насос центробежного типа для обеспечения циркуляции охлаждающей жидкости в системе;
  • трубопроводы, связывающие двигатель с радиатором.

Двухконтурная система охлаждения

двухконтурная система охлаждения (напр. дизеля — Тепловоз ТЭП150). В одном контуре охлаждается вода дизеля, а в другом вода, охлаждающая масло и наддувочный воздух (в тепло­обмен­ных аппаратах). Охлаждение воды обеих контуров осуществляется воздухом в полуторных радиаторных секциях холодильной камеры, имеющей три мотор-вентилятора. В контуре охлаждения воды дизеля используются радиаторные секции половинной глубины, а в контуре охлаждения воды второго контура используются радиаторные секции полной глубины. Мотор-вентиляторы холодильной камеры оборудованы системой плавного регулирования их производительности.

Подвид системы охлаждения, называемый испарительной системой охлаждения

Также существует подвид системы охлаждения, называемый испарительной системой охлаждения. Главное отличие её от обычных водяных или этиленгликолевых — доведение температуры охлаждающей жидкости (воды) выше точки кипения, в результате чего при испарении от теплонагруженных деталей отводится большое количество тепла. Пар конденсируется в жидкость в радиаторе и цикл повторяется. Подобные системы использовались в авиастроении в 30-х годах XX века.

Как происходит воздушное охлаждение

В отличие от классического водяного воздушная система охлаждения двигателя подразумевает отвод тепла от мотора под действием естественного или принудительно сформированного потока. Последний образуется, благодаря вентиляторам, которые могут работать в автономном режиме или запускаться от маховика.
Как результат, воздух является основным элементом для охлаждения радиатора, ГБЦ и самих цилиндров. Конструктивно система стоит из следующих элементов:

  • Вентилятор. Чаще всего запускается через шкив коленвала.
  • Ребристая поверхность ГБЦ.
  • Защитная сеть — установлена на вентиляторе во избежание попадания в устройство сторонних элементов.
  • Корпус, дефлекторы и устройства для контроля.

Воздух идет на специальные ребра, после чего через узлы-дефлекторы направляется на разные элементы силового агрегата.

Главной особенностью системы является температура «воздушника», которая находится на уровне 130-140 градусов Цельсия. Для сравнения в стандартных системах этот параметр находится в пределах 90-100 градусов. 

Расчет аппаратов воздушного охлаждения (АВО)

В целом методика расчета аппарата воздушного охлаждения аналогична расчету кожухотрубных теплообменников. Предварительная конфигурация теплообменного блока выбирается на основе общего коэффициента теплопередачи с учетом значений основных параметров, которые приведены ниже. Далее выполняются корректирующие тепловые и гидравлические расчеты, в результате которых предварительная конфигурация блока обретает необходимый вид. Важным предварительным шагом в расчете аппарата воздушного охлаждения является выбор температуры воздуха на выходе. Этот параметр оказывает существенное влияние на стоимость АВО. Повышение температуры воздуха на выходе из аппарата с воздушным охлаждением уменьшает количество необходимого воздуха, что снижает мощность вентилятора и, следовательно, эксплуатационные расходы. Однако, это также уменьшает коэффициент теплопередачи со стороны воздуха, что приводит к увеличению теплообменника, а следовательно и капитальных вложений.

Трубы

Выбор диаметра и материала труб теплообменника должен осуществляться на основе свойств и температуры охлаждаемой жидкости с учетом антикоррозионных свойств материалов.

Распределение воздушного потока

Чтобы получить равномерное распределение потока воздуха по всей площади теплообменника, площадь вентилятора должна составлять не менее 40% от площади теплообменной секции. Отношение длины секции к ширине должно быть в пределах 3-3,5. Кроме того желательно иметь не менее четырех трубок в глубину для эффективного использования площади теплообменника. Максимальное количество трубок зависит от статического сопротивления, при котором может работать вентилятор. Обычно эти данные указаны в паспорте вентилятора.

Температура окружающей среды

Расчет аппарата воздушного охлаждения должен быть произведен при температуре воздуха в условиях летнего периода. Однако, использование для расчетов самой высокой температуры воздуха приводит к увеличению размеров теплообменного блока, что сильно увеличивает стоимость аппарата. Обычно на практике принимают значения температуры, которые преобладают в данном регионе в течение 90-95% летнего времени.

Температура воздуха на выходе

При расчетах температура воздуха на выходе из аппарата должна ограничиваться примерно 100°С для того, чтобы предотвратить повреждение лопастей вентилятора и подшипников. Тем не менее, эти части могут быть подвержены воздействию высоких температур в случае неисправности вентилятора.

Скорость воздушного потока

Скорость воздушного потока обычно составляет 3-6 м/с. Значения в этом диапазоне, как правило, обеспечивают разумный баланс между теплопередачей с воздушной стороны и падением давления.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Мастер Юрий Меркулов
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Система охлаждения двигателя внутреннего сгорания: как это работает

Плюсы и минусы

Система жидкостного охлаждения широко применяется в автомобилестроении. При этом более эффективной системы пока и не разработано. Главный плюс — равномерный отвод тепла от силового агрегата, чего сложно добиться при более дешевом воздушном охлаждении. Такая особенность поясняется низкой теплопроводностью и завышенной теплоемкостью ОЖ (если сравнивать с воздухом). Кроме этого, применение жидкостной системы позволяет снизить уровень шума при работе мотора за счет утолщения стенок силового агрегата. Кроме этого, система обладает некой инерционностью, что не дает мотору быстро терять температуру после отключения зажигания. При этом прогретая жидкость применяется не только для ускорения нагрева самого мотора, но и обеспечения комфортной температуры в салоне.

Несмотря на преимущества, у жидкостной системы охлаждения есть и ряд негативных моментов. Главный из них заключается в работе системы под постоянным давлением, что повышает риски потери герметичности и появления течи в системе. Ситуация усложняется и тем, что система работает по принципу нагрев-охлаждение, что пагубно влияет на состояние соединяющих узлы системы патрубков. По этой причине стоит время от времени проверять состояние соединяющих элементов и не допускать их выхода из строя. Также стоит отметить и взаимосвязь всех элементов. Если какой-то из них выходит из строя (к примеру, термостат), то двигатель может закипеть.

Основные элементы

Система охлаждения двигателя содержит следующие элементы:

  • Рубашка охлаждения или «водяная рубашка». Представляет собой систему каналов проходящих в блоке цилиндров.
  • Радиатор охлаждения — устройство для охлаждения самой жидкости. Состоит из каналов изогнутых труб и металлических рёбер для лучшей теплоотдачи. Охлаждение происходит как благодаря встречному потоку воздуха, так и внутренним вентилятором.
  • Вентилятор. Элемент системы охлаждения, предназначенный для усиления потока воздуха. На современных автомобилях он включается только при срабатывании температурного датчика, когда радиатор неспособен полноценно охладить жидкость встречным потоком воздуха. В старых моделях автомобилей вентилятор работает постоянно. Вращение на него передаётся от коленчатого вала через ременной привод.
  • Насос или помпа. Обеспечивает циркуляцию охлаждающей жидкости по каналам системы. Приводится в действие с помощью ременного или шестерёнчатого привода от коленчатого вала. Как правило, мощные двигателя с прямым впрыском топлива комплектуются дополнительным насосом.
  • Термостат. Важнейшая деталь системы охлаждения, контролирующая циркуляцию по большому кругу охлаждения. Основной задачей является обеспечение нормального температурного режима при эксплуатации транспортного средства. Обычно установлен на стыке входного патрубка и рубашки охлаждения.
  • Расширительный бачок — ёмкость необходимая для сбора избытка охлаждающей жидкости возникающего в процессе её нагревания.
  • Радиатор отопления или печка. По своему устройству похож на радиатор охлаждения в меньшем размере. Однако, используется исключительно для обогрева салона автомобиля в зимний период и непосредственной роли в охлаждении ДВС не играет.

Виды систем охлаждения двигателя в автомобиле

На сегодняшний день самыми распространенными являются следующие типы охлаждения:

  • воздушная;
  • жидкостная.

Рассмотрим их особенности, преимущества и недостатки.

Воздушное охлаждение

Воздушная система встречается крайне редко. Это обусловлено спецификой этого вида охлаждения и меньшей эффективностью по сравнению с жидкостной. Ее можно встретить на старых моделях ЗАЗ, малолитражных автомобилях ОКА, а также грузовых машинах чешского производства Tatra. Кроме того, она применяется на подавляющем большинстве мопедов, мотороллеров и мотоциклов.

Конструкция несколько отличается от жидкостной. В ней отсутствует радиатор. Вместо него имеется специальная рубашка цилиндроблока, снабженная направляющими ребрами. Они обеспечивают максимально эффективное омывание цилиндров воздухом. Его нагнетает вентилятор. Чтобы потоки воздуха не рассеивались и имели постоянную силу, цилиндры скрыты специальным кожухом.

Таким образом, в воздушной системе цилиндроблок охлаждается воздухом без посредничества жидкости.

К достоинствам этого типа охлаждения можно отнести:

  • простоту конструкции (и, как следствие, техобслуживания);
  • малый вес;
  • надежность.

Однако она имеет и недостатки:

  • меньшую эффективность по сравнению с жидкостной;
  • высокий уровень шума при запущенном двигателе;
  • невозможность использования тепла мотора для обогрева авто;
  • большую потерю мощности, которая уходит на вращение вентилятора;
  • чувствительность к перепадам температуры окружающей среды (в мороз запустить мотор гораздо сложнее).

Как можно заметить, минусы в данном случае перевешивают плюсы. Это и обусловило столь малое распространение охлаждения двигателя внутреннего сгорания этой разновидности.

Жидкостное охлаждение

Устройство и принцип действия жидкостной охладительной системы ДВС более подробно описаны выше. Здесь стоит сказать о ее преимуществах и недостатках.

К числу плюсов можно отнести следующие:

  • легкий пуск в мороз;
  • равномерное охлаждение;
  • возможность использование блочной конструкции цилиндровой группы, которая делает компоновку мотора более простой;
  • малый уровень шума при работе ДВС;
  • отсутствие механической нагрузки в деталях узла;
  • меньшая потеря мощности.

А это – недостатки подобного типа систем:

  • более сложная конструкция (а значит, и техническое обслуживание);
  • необходимость периодической смены жидкости;
  • возможность подтекания или замерзания охладителя, которые нарушают общую работу системы;
  • увеличенный коррозийный износ, возникающий вследствие постоянного контакта металлических элементов конструкции с жидкостью.

системы охлаждения авто

Виды систем охлаждения

Всего на двигателях внутреннего сгорания используется два типа охлаждения – воздушное и жидкостное.

Воздушная система охлаждения, ее конструкция, недостатки

Устройство воздушной системы охлаждения двигателя

В силу ряда недостатков на автомобильном транспорте воздушная система широкого распространения не получила, хотя конструктивно она значительно проще, чем жидкостная.

Основным ее элементом являются ребра охлаждения на цилиндрах.

Тепло, выделяемое от цилиндров, распространялось на эти ребра, а проходящий через них поток воздуха осуществлял его отвод. Для создания потока дополнительно конструкция системы могла включать турбину – специальную крыльчатку, с приводом от коленчатого вала и рукав, которым создаваемый поток воздуха направлялся на цилиндры. Это  вся конструкция воздушной системы.

На автотранспорте воздушная система практически не используется, потому что:

  • невозможна регулировка температурного режима (зимой мотор не выходил на необходимую температуру, а летом – очень быстро перегревался);
  • чтобы обеспечить равномерное распределение потока воздуха, каждый цилиндр стоял отдельно;
  • во время стоянки с заведенным мотором даже при наличии турбины поток воздуха очень слабый, что приводит к быстрому перегреву;
  • невозможно организовать обогрев салона.

Работа системы охлаждения

Циркуляцию жидкости в системе охлаждения осуществляют по двум кругам: малому и большому.

По малому кругу жидкость циркулирует при пуске холодною двигателя, обеспечивая его быстрый прогрев в такой последовательности: жидкостной насос — распределительные трубы — рубашка охлаждения блока цилиндров — рубашка охлаждения головки блока цилиндров — верхний патрубок термостата (клапан закрыт) — перепускной шланг приемная полость жидкостного насоса.

По большому кругу жидкость циркулирует при прогретом двигателе: жидкостной насос (как и по малому кругу) — термостат (клапан открыт) — резиновый шланг — патрубок радиатора — верхний бачок радиатора — сердцевина радиатора — нижний бачок радиатора — патрубок — шланги — приемная полость жидкостного насоса.

Переохлаждение двигателя сопровождается ростом механических потерь из-за повышения вязкости масла, ухудшением процессов смесеобразования и сгорания, следствием чего является повышенный расход топлива. Конденсация паров воды в картерной полости холодного двигателя и на стенках цилиндров приводит к коррозии. В отрабатавших газах повышается содержание углеводородов не сгоревшего топлива и высокотоксичных альдегидных соединений.Принудительный отвод теплоты от деталей двигателя осуществляется с помощью жидкости или воздуха, в связи с чем различают двигатели жидкостного и воздушного охлаждения.

Радиатор является теплообменником системы охлаждения, где поступающая из двигателя жидкость передаст теплоту потоку воздуха.

Радиатор состоит из верхнего и нижнего бачков, соединенных между собой трубками, образующими его охлаждающую решетку (сердцевину ра­диатора). Верхний бачок радиатора имеет наливную горловину с пробкой, а нижний — сливной кран. В наливную горловину впаяна пароотводная трубка, соединенная с расширительным бачком. Пароотводная трубка за­глублена в радиатор, где отводимые пары конденсируются. К верхнему и нижнему бачкам припаяны боковые стойки. Стойки и пластина образуют каркас радиатора. Сердцевина радиатора состоит из нескольких рядов тру­бок, впаянных в верхний и нижний бачки. К трубкам крепятся гонкие ох­лаждающие пластины или гофрированные ленты, изготовленные из лату­ки, алюминия или красной меди.

Пробка заливной горловины в закрытых системах жидкостного охлажде­ния имеет два предохранительных клапана с уплотнительными резиновы­ми прокладками и пружинами. Паровой клапан регулируют на избыточное давление (0,145—0,160 МПа), воздушный клапан открывается при падении давленияв системе против атмосферного не более чем на 0,01 МПа.

При нормальном функционировании клапанов система охлаждения только кратковременно может сообщаться с окружающей средой или поло­стью расширительного бачка.

Жалюзи устанавливаются перед радиатором, с их помощью регулирует­ся количество воздуха, проходящего через сердцевину радиатора. Жалюзи изготовляются в виде набора вертикальных иди горизонтальных пластин — створок из оцинкованного железа, которые объединены общей рамкой и снабжены шарнирным устройством, обеспечивающим одновременный или групповой поворот их вокруг своей оси. Жалюзи прикрепляют к каркасу радиатора или к его наружной облицовке. Управление створками осущест­вляется вручную или с помощью устройства с термостатом.

Жидкостной насос создаст в системе охлаждения принудительную цир­куляцию жидкости. Применяют одноступенчатые жидкостные насосы цен­тробежного типа. Привод насоса, как правило, работает от шкива коленча­того вала посредством клиноременной передачи.

Жидкостной насос состоит из корпуса, вала привода с крыльчаткой, ступицы для крепления шкива привода, самоподжимной уплотняющей манжеты, двух латунных обойм, резиновой манжеты» уплотняющей шайбы ипружинного кольца. Вал насоса вращается на двух шарикоподшипниках.

Центробежные насосы одноступенчатого типа, рассчитанные на давле­ние и 0,04 —0,1 МПа, отличаются компактностью и обеспечивают доста­точную подачу жидкости при сравнительно больших зазорах между крыль­чаткой и стенками корпуса.

Вентилятор служит для создания воздушного потока, проходящего че­рез сердцевину радиатора, для охлаждения жидкости, протекающей по трубкам.

Обслуживание системы охлаждения гарантия нормальной работы вашего двигателя.

Можно ли сделать кондиционер из старого холодильника

Абсолютно утопическая идея. Все материалы, опубликованные в русскоязычном интернете, описывают один и тот же видеоролик, где человек пытается из двух холодильников соорудить морозильную камеру для грибов. Причем результат этого действа неизвестен, потому что видеоматериал неполный. Давайте представим, как это должно выглядеть:

  1. Из холодильника аккуратно вырезаются оба теплообменника без отключения от компрессора, иначе фреон улетучится и вам придется платить за заправку.
  2. Компрессор с конденсатором выносится за пределы помещения, а испаритель (бывшая морозилка) устанавливается в комнате. К ней нужно приладить вентилятор для обдува.
  3. Штатный датчик и блок управления, настроенный на температуру отключения компрессора минус 3—6 °С, придется выбросить и заменить другими элементами, подключив агрегаты через реле. Иначе компрессор никогда не остановится и сломается через 100—200 часов непрерывной работы.


Организация охлаждения комнаты с помощью двух холодильников, встроенных в стену. Результаты работы неизвестны. Давайте отбросим все технические тонкости (не такой режим работы, другая марка фреона и так далее) и представим, что вам удалось собрать эту схему. Максимальная холодильная мощность подобных агрегатов составляет не более 400 Вт или 0.4 кВт. Грубый расчет показывает, что этого хватит для комнаты площадью 4 м². Это в теории, а на практике выйдет еще меньше.

Вывод. Если вы относитесь к благородному племени энтузиастов и экспериментаторов, то можете попытаться сделать из холодильника кондиционер. Но труда вы затратите гораздо больше, чем получите холода.

Охлаждение отработавших газов

В связи с принятием новых более жестких норм предельно допустимого содержания вредных веществ в отработавших газах дизельных двигателей, объектом внимания специалистов становятся новые технологии по снижению ток­сичности. Одной из таких технологий является охлаждаемая система рециркуляции отработав­ших газов (EGR). Система рециркуляции отрабо­тавших газов размещается в области высокого давления двигателя. Часть отработавших газов отбирается из основного потока между блоком цилиндров и турбонагнетателем отработавших газов. Эти отработавшие газы охлаждаются охлаждающей жидкостью двигателя, а затем снова вводятся в поток свежего воздуха на выходе промежуточного охладителя. Система EGR состоит из клапана, регулирующего коли­чество рециркулирующих отработавших газов, выпускных трубопроводов и теплообменника, который подвергается воздействию очень вы­соких температурных нагрузок (например, в двигателях легковых автомобилей температура отработавших газов может достигать 450 °С, а в двигателях грузовиков — 700 °С), что требует применения термостойких материалов. (см. рис. «Схема системы рециркуляции охлаждаемых отработавших газов» )

Кроме того, материал должен обладать стой­костью к коррозии и иметь высокую механиче­скую прочность. Поэтому для этих целей при­меняются специальные нержавеющие стали.

Для достижения необходимой степени рециркуляции теплообменники должны обе­спечивать очень низкий перепад давления. Также должны быть приняты меры к пре­дотвращению их засорения. В конструкции охладителей отработавших газов применены пучки гладких или оребренных труб. Отрабо­тавшие газы проходят по трубкам, а охлаж­дающая жидкость циркулирует в рубашке охладителя.

Еще одним применением охладителей от­работавших газов является их предваритель­ное охлаждение на двигателях с искровым зажиганием. Предварительное охлаждение отработавших газов требуется для поддер­жания их температуры в пределах рабочего диапазона каталитических нейтрализаторов аккумуляторного типа.

РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:

Система охлаждения двигателя ВАЗ 2101

На автомобили ВАЗ 2101 производитель устанавливал два вида бензиновых двигателей — 2101 и 21011. Оба агрегата имели герметичную систему охлаждения жидкостного типа с принудительной циркуляцией хладагента.

Назначение системы охлаждения

Система охлаждения двигателя (СОД) предназначена не столько для снижения температуры силового агрегата в процессе работы, сколько для поддержания его нормального теплового режима. Дело в том, что добиться от мотора стабильной функциональности и оптимальных мощностных показателей можно только при условии его работы в определённых температурных рамках. Иными словами, двигатель должен быть горячим, но не перегреваться. Для силовой установки ВАЗ 2101 оптимальной считается температура 95–115оС. Кроме этого, система охлаждения используется для обогрева салона автомобиля в холодное время года и нагревания дроссельного узла карбюратора.

Видео: как работает система охлаждения двигателя

Основные параметры системы охлаждения ВАЗ 2101

Любая система охлаждения двигателя имеет четыре основных индивидуальных параметра, отклонение которых от нормативных значений может привести к выходу системы из строя. Эти параметры следующие:

  • оптимальная температура охлаждающей жидкости (ОЖ);
  • время прогрева двигателя до рабочей температуры;
  • оптимальное давление ОЖ;
  • объём ОЖ в системе.

Температура охлаждающей жидкости

Оптимальный температурный режим работы двигателя определяется:

  • типом потребляемого топлива;
  • объёмом цилиндров;
  • расчётной мощностью.

Для ВАЗ 2101 рабочей считается температура двигателя от 95 до 115оС. Несоответствие фактических показателей рекомендованным значениям является признаком нарушения температурного режима. Продолжать движение на автомобиле в этом случае не рекомендуется.

Время прогрева двигателя

Регламентированное производителем время прогрева двигателя ВАЗ 2101 до рабочей температуры составляет 4–7 мин в зависимости от времени года. За это время ОЖ должна нагреться как минимум до 95оС. В зависимости от степени износа деталей двигателя, типа и состава ОЖ и характеристик термостата возможно небольшое отклонение этого параметра (1–3 мин) в сторону увеличения.

Рабочее давление ОЖ

Величина давления ОЖ — важнейший показатель работоспособности СОД. Оно не только способствует принудительной циркуляции хладагента, но и предотвращает его закипание. Из курса физики известно, что температуру кипения жидкостей можно увеличить, повысив давление в закрытой системе. В обычных условиях ОЖ закипает при 120оС. В исправной же системе охлаждения ВАЗ 2101 под давлением в 1,3–1,5 атм антифриз закипит только при 140–145оС. Снижение давления ОЖ до атмосферного может привести к ухудшению или прекращению циркуляции жидкости и преждевременному её закипанию. В результате коммуникации системы охлаждения могут выйти из строя и привести к перегреву двигателя.

Объём ОЖ

Далеко не каждый владелец «копейки» знает, какой объем хладагента помещается в двигатель его машины. При замене жидкости, как правило, покупают четырёх- или пятилитровую канистру ОЖ, и этого обычно хватает. На самом же деле двигатель ВАЗ 2101 вмещает 9,85 л хладагента, а при замене он сливается не полностью. Поэтому при замене ОЖ нужно сливать её не только с главного радиатора, но и из блока цилиндров, а покупать следует сразу десятилитровую канистру.

Типы систем охлаждения

Существует три типа систем охлаждения двигателей внутреннего сгорания: воздушная, жидкостная и гибридная.

Термические двигатели для А. требуют охлаждения цилиндров. Только для слабых, велосипедных газолиновых двигателей достаточно воздушного охлаждения при помощи рубцов, прилитых к поверхности цилиндра; для более сильных необходима циркуляция воды помощью насоса между двойными стенками цилиндров, охлаждаемой в особом трубчатом приборе, помещаемом впереди А. и обдуваемом струей встречного воздуха.

Воздушное охлаждение

Рубашка цилиндра свободно обдувается воздухом, тем самым забирая большую часть тепла двигателя. Является самой простой, так как не требует сложных деталей и систем управления. Недостаток системы заключается в маленькой теплоёмкости воздуха, что не позволяет равномерно отводить от двигателя большое количество тепла и, соответственно, создавать компактные мощные силовые установки.

Примером машины с воздушным охлаждением может служит автомобиль ЗАЗ-965. Так как предполагалось, что советским автовладельцам придется обслуживать автомобиль самостоятельно (и с учётом дефицита запчастей), воздушное охлаждение оценивалось положительно и виделось весьма практичным в суровых зимних условиях (при низких температурах нет риска замерзания охлаждающей жидкости на стоянке). Кроме того, малая масса силового агрегата, его простота и разборная конструкция (съёмные цилиндры) позволяла отремонтировать автомобиль практически «в чистом поле». Однако такая конструкция системы охлаждения обусловила возникновение проблемы перегрева в жаркую погоду, которая особенно усугублялась в процессе износа двигателя, когда его оребрение покрывалось слоем масла и прилипшей к нему пыли. Следует отметить, что на автомобилях ЛуАЗ-967, где тот же двигатель работал с большей нагрузкой, но лучше обдувался набегающим потоком воздуха, его перегрев наблюдался редко.

Жидкостное охлаждение

Основная статья: Жидкостное охлаждение

Цилиндры двигателя охлаждаются жидкостью, после чего она возвращается в расширительный бачок. Является очень старым типом системы охлаждения, в настоящее время этот тип в автомобилестроении не используется, так как жидкость не успевает охладиться, поэтому двигатели, оснащённые этой системой охлаждения, не могут работать в течение длительного времени. Однако в двигателях речных и морских судов запас охлаждающей жидкости (забортной воды) не ограничен, что позволяет уменьшить вес силовой установки по сравнению с двигателями с гибридной системой охлаждения.

Гибридный тип

Сейчас гибридную систему называют жидкостной. Фактически она всё же гибридная, так как там тоже участвует воздух.

Система жидкостного охлаждения обычно включает следующие элементы:

  • двойные стенки цилиндров, пространство между которыми заполнено охлаждающей жидкостью (например, водой или антифризом);
  • теплообменник или радиатор, состоящий из трубок и полостей;
  • вентилятор, состоящий из ступицы и лопастей, при вращении которого обеспечивается прокачка воздуха между трубками радиатора;
  • насос центробежного типа для обеспечения циркуляции охлаждающей жидкости в системе;
  • трубопроводы, связывающие двигатель с радиатором.

Двухконтурная система охлаждения

двухконтурная система охлаждения (напр. дизеля — Тепловоз ТЭП150). В одном контуре охлаждается вода дизеля, а в другом вода, охлаждающая масло и наддувочный воздух (в тепло­обмен­ных аппаратах). Охлаждение воды обеих контуров осуществляется воздухом в полуторных радиаторных секциях холодильной камеры, имеющей три мотор-вентилятора. В контуре охлаждения воды дизеля используются радиаторные секции половинной глубины, а в контуре охлаждения воды второго контура используются радиаторные секции полной глубины. Мотор-вентиляторы холодильной камеры оборудованы системой плавного регулирования их производительности.

Подвид системы охлаждения, называемый испарительной системой охлаждения

Также существует подвид системы охлаждения, называемый испарительной системой охлаждения. Главное отличие её от обычных водяных или этиленгликолевых — доведение температуры охлаждающей жидкости (воды) выше точки кипения, в результате чего при испарении от теплонагруженных деталей отводится большое количество тепла. Пар конденсируется в жидкость в радиаторе и цикл повторяется. Подобные системы использовались в авиастроении в 30-х годах XX века.

Как происходит воздушное охлаждение

В отличие от классического водяного воздушная система охлаждения двигателя подразумевает отвод тепла от мотора под действием естественного или принудительно сформированного потока. Последний образуется, благодаря вентиляторам, которые могут работать в автономном режиме или запускаться от маховика.
Как результат, воздух является основным элементом для охлаждения радиатора, ГБЦ и самих цилиндров. Конструктивно система стоит из следующих элементов:

  • Вентилятор. Чаще всего запускается через шкив коленвала.
  • Ребристая поверхность ГБЦ.
  • Защитная сеть — установлена на вентиляторе во избежание попадания в устройство сторонних элементов.
  • Корпус, дефлекторы и устройства для контроля.

Воздух идет на специальные ребра, после чего через узлы-дефлекторы направляется на разные элементы силового агрегата.

Главной особенностью системы является температура «воздушника», которая находится на уровне 130-140 градусов Цельсия. Для сравнения в стандартных системах этот параметр находится в пределах 90-100 градусов. 

Расчет аппаратов воздушного охлаждения (АВО)

В целом методика расчета аппарата воздушного охлаждения аналогична расчету кожухотрубных теплообменников. Предварительная конфигурация теплообменного блока выбирается на основе общего коэффициента теплопередачи с учетом значений основных параметров, которые приведены ниже. Далее выполняются корректирующие тепловые и гидравлические расчеты, в результате которых предварительная конфигурация блока обретает необходимый вид. Важным предварительным шагом в расчете аппарата воздушного охлаждения является выбор температуры воздуха на выходе. Этот параметр оказывает существенное влияние на стоимость АВО. Повышение температуры воздуха на выходе из аппарата с воздушным охлаждением уменьшает количество необходимого воздуха, что снижает мощность вентилятора и, следовательно, эксплуатационные расходы. Однако, это также уменьшает коэффициент теплопередачи со стороны воздуха, что приводит к увеличению теплообменника, а следовательно и капитальных вложений.

Трубы

Выбор диаметра и материала труб теплообменника должен осуществляться на основе свойств и температуры охлаждаемой жидкости с учетом антикоррозионных свойств материалов.

Распределение воздушного потока

Чтобы получить равномерное распределение потока воздуха по всей площади теплообменника, площадь вентилятора должна составлять не менее 40% от площади теплообменной секции. Отношение длины секции к ширине должно быть в пределах 3-3,5. Кроме того желательно иметь не менее четырех трубок в глубину для эффективного использования площади теплообменника. Максимальное количество трубок зависит от статического сопротивления, при котором может работать вентилятор. Обычно эти данные указаны в паспорте вентилятора.

Температура окружающей среды

Расчет аппарата воздушного охлаждения должен быть произведен при температуре воздуха в условиях летнего периода. Однако, использование для расчетов самой высокой температуры воздуха приводит к увеличению размеров теплообменного блока, что сильно увеличивает стоимость аппарата. Обычно на практике принимают значения температуры, которые преобладают в данном регионе в течение 90-95% летнего времени.

Температура воздуха на выходе

При расчетах температура воздуха на выходе из аппарата должна ограничиваться примерно 100°С для того, чтобы предотвратить повреждение лопастей вентилятора и подшипников. Тем не менее, эти части могут быть подвержены воздействию высоких температур в случае неисправности вентилятора.

Скорость воздушного потока

Скорость воздушного потока обычно составляет 3-6 м/с. Значения в этом диапазоне, как правило, обеспечивают разумный баланс между теплопередачей с воздушной стороны и падением давления.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Мастер Юрий Меркулов
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector