table-01
AIRLINE APR-M‑03
Примерная цена 725 руб.
Симпатичное питерско-китайское изделие с механизмом для сброса давления. Точность — не очень. Рукоятка длинная и неудобная: так и норовит выкрутиться из соединительной муфты шланга. Пришлось доработать конструкцию — подтянули рукоятку в тисках.
Примерная цена 290 руб.
Китайский приборчик снабжен механизмом для сброса давления. Оцифровка очень мелкая. В середине шкалы — большие проблемы с точностью. Указан температурный диапазон: +5 …+ 40 ºС. А зимой как измерять?
BERKUT SPECIALIST
Примерная цена 890 руб.
Российско-китайское изделие показало хорошую точность измерений. Рабочий диапазон температур: от —10 ºС. Давление проверять неудобно: большой палец так и норовит включить фонарик. Механизма для сброса давления нет.
DAEWOO MASTER LINE
Примерная цена 500 руб.
Корейско-китайский прибор — единственный абсолютно точный. Удобный корпус для подсоединения к вентилю. Яркая шкала, оптимальный размер шрифта, простое меню. Нет механизма для сброса давления — прибор-то электронный.
HEYNER
Примерная цена 320 руб.
Маленький немецкий манометр показал высокую точность измерений. Шкала маленькая, но цифры хорошо читаются. Есть механизм для сброса давления.
Примерная цена 160 руб.
Упаковка намекает на английское происхождение, но что-то не верится. Простое изделие с выдвижным алюминиевым штоком; почти нечитаемая шкала, да еще размеченная только в psi. Точность не ахти какая. Механизма сброса давления нет.
ZIPOWER РМ 4276
Примерная цена 150 руб.
У китайско-американского изделия мелкая оцифровка и невысокая точность, особенно в верхней части шкалы. Зато есть механизм для сброса давления. И цена бросовая.
В ЧЕМ ИЗМЕРЯЮТ ДАВЛЕНИЕ?
Большинство приборов имеет шкалу, размеченную в барах или атмосферах (атм, кг/см²). Это очень близкие единицы: 1 кг/см² = 0,98 бар. Кроме того, часто используют psi — фунты на квадратный дюйм. Формула пересчета: 1 кг/см² = 14,2 psi. Если инструкция к автомобилю рекомендует давление, измеренное в psi (скажем, 31 или 33), то можно не мучиться с пересчетом в технические атмосферы, а пользоваться манометром с соответствующей шкалой.
*Обзор лучших по мнению редакции expertology.ru. О критериях отбора. Данный материал носит субъективный характер, не является рекламой и не служит руководством к покупке. Перед покупкой необходима консультация со специалистом.
Автомобильные манометры – приборы для измерения давления в шинах, значение которых в практике эксплуатации транспортных средств очень трудно переоценить. Эти незамысловатые устройства позволяют водителям избегать дисбаланса давления в колёсах, которое может привести к ухудшению управляемости, а также поддерживать оптимальные рабочие показатели колеса для минимизации изнашивания резины.
На данном этапе развития автомобильные манометры подразделяются на две принципиально разные группы:
- стрелочные (аналоговые) – надёжные и недорогие устройства, главный недостаток которых заключается в отсутствии автоматизации процесса замеров (если на манометре не предусмотрен дефлятор) и сложности использования в тёмное время суток;
- цифровые (электронные) – девайсы с автоматическим определением и фиксацией результатов замеров, недостатком которых до недавнего времени была низкая степень надёжности составных элементов.
Ввиду развитости рынка автомобильных манометров каждый владелец транспортного средства так или иначе сталкивается с проблемой выбора. Зачастую, если опыт использования таких приборов минимален или вовсе отсутствует, приходится уповать на подсказки консультантов или иных источников, достоверность которых оставляет желать лучшего. В связи с подобным положением журнал Expertology провёл экспертный анализ доступной информации и подготовил для вас рейтинг самых лучших автомобильных манометров в двух ведущих категориях рассматриваемого сегмента. В качестве критериев отбора были выбраны коллективные оценки группы экспертов, а также отзывы потребителей наряду с совокупными характеристиками рассматриваемых моделей.
Жидкостные термометры
Стеклянные жидкостные измерители известны как самые элементарные и точные термометры, которые выпускаются прямыми и угловыми. А сфера их применения – анализ технологического оборудования, а также коммунальное хозяйство (замеры в трубопроводах). Приборы подходят для значений от -35 до +600 °С, причем в качестве чувствительного элемента чаще других применяют ртуть, а показания записывают по шкале.
В зависимости от места применения и особенностей строения различают устройства медицинские, технические, электроконтактные, жидкостные, палочные и прочие.
Конкретный прибор для измерения температуры воды выбирается с учетом допустимой погрешности при замерах.
Манометрический термометр, устройство и принцип работы
Принцип работы манометрического термометра основан на изменении в зависимости от температуры давления жидкости (газа или пара) в замкнутом объеме. Газовые приборы заполняются азотом, жидкостные — ртутью, ксилолом, толуолом при начальном давлении 1,5 — 2 МПа. В парожидкостных манометрических термометрах рабочим веществом служат низкокипящие органические жидкости (хлористый метил, ацетон, бензол).
Являясь техническими (показывающими или самопишущими), данные приборы предназначены для измерения температуры в пределах от -150°C до +600°C с классом точности 1 — 2,5.
Схема манометрического термометра:
1 — тяга. | |
2 — трубчатая пружина. | |
3 — капиллярная трубка. | |
4 — штуцер с сальниковым уплотнением. | |
5 — термобаллон. |
Рассмотрим подробнее представленную схему. Замкнутая система манометрического термометра, заполненная рабочим веществом, состоит:
- Из термобаллона, погружаемого в измеряемую среду. Термобаллон из стальной или латунной трубки с одного конца закрыт, а с другого соединен с капилляром через объемный штуцер с сальниковым уплотнением и резьбой.
- Трубчатой (манометрической) пружины, воздействующей посредством тяги на стрелку прибора.
- Капиллярной трубки, соединяющей пружину с термобаллоном. Капилляр изготавливается из полой медной или стальной трубки с внутренним диаметром 0,2 — 0,4 мм и толщиной стенки 0,5 — 2 мм. Снаружи капилляр защищен металлической оплеткой. Длина капилляра может достигать 60 м.
Технические характеристики
У инфракрасного пирометра, как и у любого прибора, имеются свои технические характеристики. При выборе той или иной модели человек опирается именно на них. Самые важные из них мы сейчас и опишем более подробно.
Оптическое разрешение
Этот параметр определяет площадь объекта, где нужно измерить температурный показатель. Этот показатель полностью зависит от угла объектива аппарата. Чем больше этот угол, тем площадь измерения температуры будет значительнее. Но при этом ещё учитывается и расстояние до поверхности измерения. Основным условием точного результата является наложение пятна исключительно на материал поверхности. Значение температурного показателя будет неточным при превышении площади.
Оптическим разрешением называют величину отношения диаметра пятна устройства к расстоянию до объекта. Оно может колебаться, в зависимости от модели прибора, от (2:1) до (600:1). Величина (600:1) относится к профессиональным приборам измерения, которые применяются для того, чтобы снять показатели нагрева поверхности материала в тяжёлой промышленности. Для полупрофессиональных и бытовых приборов оптимальным показателем является величина, равная (10:1).
Рабочий дизайн
Эта характеристика определяется параметрами пирометрического датчика. Для большинства приборов он колеблется в пределах от (—30) до (+360) градусов. Практически все виды пирометров можно применять для бытовых целей с учётом того, что максимальная температура в системе отопления может быть (110) градусов.
Погрешность и коэффициент излучения
Эта характеристика в зависимости от точности настроек прибора указывает степень колебаний значений температурного режима. В среднем от нормированного показания допускаются отклонения в пределах 2%.
Коэффициент излучения — это отношение мощности теплового излучения при определённом температурном показателе к такому же параметру эталонного тела, который имеет абсолютно чёрный цвет. Для материалов неблестящих он составляет 0,9−0,95. Именно по этой причине многие оборудования дистанционного измерения температурного показателя настроены на такое число.
Но если попробовать ими измерить, насколько нагрета поверхность алюминиевая, то на индикаторе значение будет от фактического отличаться значительно.
Многие модели для точности измерения оборудованы лазерной указкой. Располагается световое пятно не в центре, а обозначает оптимальную границу измеряемой области.
.1 Измерение температуры
Существуют два основных способа для измерения температур — контактные и
бесконтактные. Контактные способы основаны на непосредственном контакте
измерительного преобразователя температуры с исследуемым объектом, в результате
чего добиваются состояния теплового равновесия преобразователя и объекта. Этому
способу присущи свои недостатки. Температурное поле объекта искажается при
введении в него термоприемника. Температура преобразователя всегда отличается
от истинной температуры объекта. Верхний предел измерения температуры ограничен
свойствами материалов, из которых изготовлены температурные датчики. Кроме
того, ряд задач измерения температуры в недоступных вращающихся с большой
скоростью объектах не может быть решен контактным способом.
Бесконтактный способ основан на восприятии тепловой энергии, передаваемой
через лучеиспускание и воспринимаемой на некотором расстоянии от исследуемого
объема. Этот способ менее чувствителен, чем контактный. Измерения температуры в
большой степени зависят от воспроизведения условий градуировки при
эксплуатации, а в противном случае появляются значительные погрешности.
Устройство, служащее для измерения температуры путем преобразования ее значений
в сигнал или показание, называется термометром (ГОСТ 13417-76),
По принципу действия все термометры делятся на следующие группы, которые
используются для различных интервалов температур:
Термометры расширения от -260 до +700 °С, основанные на изменении объемов
жидкостей или твердых тел при изменении температуры.
Манометрические термометры от -200 до +600 °С, измеряющие температуру по
зависимости давления жидкости, пара или газа в замкнутом объеме от изменения
температуры.
. Термометры электрического сопротивления стандартные от -270 до +750 °С,
преобразующие изменение температуры в изменение электрического сопротивления
проводников или полупроводников.
. Термоэлектрические термометры (или пирометры), стандартные от -50 до
+1800 °С, в основе преобразования которых лежит зависимость значения
электродвижущей силы от температуры спая разнородных проводников.
Пирометры излучения от 500 до 100000 °С, основанные на измерении
температуры по значению интенсивности лучистой энергии, испускаемой нагретым
телом,
Термометры, основанные на электрофизических явлениях от -272 до +1000 °С
(термошумовые термоэлектрические преобразователи, объемные резонансные
термопреобразователи, ядерные резонансные
Точность измерений
Любому человеку важно, насколько корректно выполнены замеры. От этого может зависеть безаварийная работа оборудования
В свою очередь, точные данные обусловлены не только характеристиками прибора, но и условиями его использования. Поэтому необходимо знать причины, влияющие на этот показатель:
- Так как пирометры являются приборами оптическими, то туманная погода, запылённое состояние окружающей среды или водяной пар снижают уровень сигнала и не способствуют передаче верных значений.
- Наблюдаемое тело должно находится в пределах прямой видимости.
- Структура также влияет на правильные данные. Чем она тверже, тем стабильнее излучаемая энергия и точнее измерения.
Какими устройствами можно измерить температуру металла
В металлургической промышленности для исследования расплавленных металлосплавов необходим прочный прибор для измерения высоких температур.
Таковыми считаются уже описанные ранее пирометры. Они фиксируют на расстоянии тепловое излучение, характеризующее фактическую температуру металла. В сложных условиях сверхвысоких показателей тепла бесконтактный способ идеален. На жидкокристаллический дисплей выводятся следующие данные:
- фактическая температура по Фаренгейту и Цельсию;
- пограничные температуры;
- заряд батареи.
Максимальной точности измеряемой переменной можно добиться только тогда, когда между объектом и дистанционным прибором нет помех в виде поглощающих тепло паров или твердых тел. Если же нужно сделать замеры металлосплава в транспортировочном ковше или при розливе, то следует принять условие, что температурный показатель окажется меньше фактического и будет определяться расчетами.
Для того чтобы избежать неточности такого способа, применяется другой прибор для измерения температуры металла, а именно имитатор черного тела. Он погружается в расплав и представлен в виде трубы с запаянным или открытым концом, полого конуса или стакана из тугоплавкого металла. В любом варианте термоизмеритель должен обладать повышенной жаропрочностью, химической стойкостью и отличной теплопроводностью, чтобы демонстрировать исключительно точные данные.
Виды термометров по используемым материалам
Здесь различают 7 категорий:
- Жидкостные. Представляют собой корпус, заполненный жидкостью, которая подвержена температурному расширению. Колба с жидкостью прикладывается к шкале. При нагреве жидкость расширяется, и столбик растет, а при охлаждении — наоборот, сжимается (уменьшается). Погрешность измерений такими приборами составляет менее 0,1 градуса.
- Газовые. Принцип действия — тот же, что и у жидкостных, но в качестве заполнителя для колбы выбирается инертный газ. Это позволяет существенно увеличить температурный диапазон измерения (если для жидкостных предел — +600 градусов, то для газовых — +1000 градусов). С их помощью можно измерять температуру в различных раскаленных жидких средах.
- Механические. В основе действия — принцип деформации металлической спирали. Часто эти термометры комплектуются стрелочным “дисплеем”. Устанавливаются в спецтехнике, автомобилях, на автоматизированных линиях. Нечувствительны к ударам.
- Электрические. Работают, измеряя уровень сопротивления проводника при разных температурных показателях. В качестве проводника могут использоваться разные металлы (например, медь или платина). Соответственно, и диапазон измерений таких устройств будет отличаться. Чаще всего такие модели применяются в лабораторных условиях.
- Термоэлектрические. В конструкции предусмотрено два проводника, проводящие замеры по физическому принципу на основе эффекта Зеебека. Эти устройства очень точные, работают с погрешностью до 0,01 градуса и подходят для высокоточных измерений в производственных процессах, когда рабочая температура превышает 1000 градусов.
- Волоконно-оптические. Чувствительные датчики из оптоволокна (оно натягивается и сжимается или растягивается при изменении температуры, а прибор фиксирует степень преломления проходящего луча света). Допустимый диапазон измерений — до +400 градусов, а погрешность — не более 0,1 градуса.
- Инфракрасные. Непосредственный контакт с измеряемым веществом не требуется: прибор генерирует инфракрасный луч, который направляется на изучаемую поверхность. Это современный вид бесконтактных термометров, которые работают с точностью до нескольких градусов и подходят для высокотемпературных измерений. С их помощью можно измерять даже температуру открытого пламени.
Компания «Измеркон» предлагает как разные виды термометров, так и комбинированные устройства, в том числе манометры-термометры или гигрометры-термометры для автономной работы с энергонезависимой памятью, обеспечивающей постоянную фиксацию результатов измерений.
Виды термометров по используемым материалам
Здесь различают 7 категорий:
-
Жидкостные. Представляют собой корпус, заполненный жидкостью, которая подвержена температурному расширению. Колба с жидкостью прикладывается к шкале. При нагреве жидкость расширяется, и столбик растет, а при охлаждении — наоборот, сжимается (уменьшается). Погрешность измерений такими приборами составляет менее 0,1 градуса.
- Газовые. Принцип действия — тот же, что и у жидкостных, но в качестве заполнителя для колбы выбирается инертный газ. Это позволяет существенно увеличить температурный диапазон измерения (если для жидкостных предел — +600 градусов, то для газовых — +1000 градусов). С их помощью можно измерять температуру в различных раскаленных жидких средах.
- Механические. В основе действия — принцип деформации металлической спирали. Часто эти термометры комплектуются стрелочным “дисплеем”. Устанавливаются в спецтехнике, автомобилях, на автоматизированных линиях. Нечувствительны к ударам.
- Электрические. Работают, измеряя уровень сопротивления проводника при разных температурных показателях. В качестве проводника могут использоваться разные металлы (например, медь или платина). Соответственно, и диапазон измерений таких устройств будет отличаться. Чаще всего такие модели применяются в лабораторных условиях.
- Термоэлектрические. В конструкции предусмотрено два проводника, проводящие замеры по физическому принципу на основе эффекта Зеебека. Эти устройства очень точные, работают с погрешностью до 0,01 градуса и подходят для высокоточных измерений в производственных процессах, когда рабочая температура превышает 1000 градусов.
- Волоконно-оптические. Чувствительные датчики из оптоволокна (оно натягивается и сжимается или растягивается при изменении температуры, а прибор фиксирует степень преломления проходящего луча света). Допустимый диапазон измерений — до +400 градусов, а погрешность — не более 0,1 градуса.
- Инфракрасные. Непосредственный контакт с измеряемым веществом не требуется: прибор генерирует инфракрасный луч, который направляется на изучаемую поверхность. Это современный вид бесконтактных термометров, которые работают с точностью до нескольких градусов и подходят для высокотемпературных измерений. С их помощью можно измерять даже температуру открытого пламени.
предлагает как разные виды термометров, так и комбинированные устройства, в том числе манометры-термометры или гигрометры-термометры для автономной работы с энергонезависимой памятью, обеспечивающей постоянную фиксацию результатов измерений.
Лазерные указатели цели
Более современные модификации пирометров комплектуются лазерными указателями цели, помогающими правильно навести датчик на точку замера и определить площадь измеряемого участка. У них различные принципы действия и точность наведения тоже различная:
- одиночный лазерный луч – ориентировочно показывает центр участка замера и границы его устанавливает неточно, его ось не совпадает с центром оптики пирометра, поэтому имеет место погрешность параллакса;
- способ коаксиальный не имеет такого недостатка – луч лазера и оптическая ось полностью совпадают и луч показывает прямо в центр участка, но не может определить его границ;
- с двойным лучом лазера – этот указатель цели в состоянии показать размеры участка замера, но при небольших расстояниях может возникать неточность. Это особенно часто происходит на короткофокусных объективах;
- с кросс-лазером указатели цели предназначены для улучшения работы пирометров с короткофокусными объективами;
- одиночный круговой лазерный луч – с его помощью можно оконтурить участок замера, но, как и просто одиночный лазерный луч, он подвержен параллаксу и искажает показания аппарата на небольших расстояниях в сторону увеличения;
- круговой точный лазерный указатель цели – самый надёжный из перечисленных выше и не имеет недостатков других конструкций.
Информация о температурных параметрах точек дистанционного наблюдения на пирометрах-термометрах выводится на экран в текстовом и цифровом виде.
Вторичные приборы, используемые при измерениях температуры
Попробуем дать определение того, что такое промышленный вторичный прибор для измерения температуры. По сути, это автоматическое устройство является важным дополнением к основному измерителю, улавливающим и преобразующим зафиксированные показатели в удобочитаемую форму. Необходимо для осуществления четкого контроля, сигнализации и своевременного регулирования температуры в тех исключительных случаях, когда происходят отклонения от заданных условиями работы параметров. Отдельно выделяют стационарные и переносные вторичные электроприборы.
Как правило, вторичные приборы для измерения температуры имеют прочный защитный стальной корпус и оснащены градуированной шкалой. Регистрация значений происходит согласно диаграмме, записанной от термопар, тензорезисторов, термометров сопротивления, преобразователей и других устройств.
Рассматривая различные способы подачи информации, следует разделить вторичные приборы на регистрирующие и показывающие, одно- и многоканальные, двухфункциональные и однодиапазонные. При наличии сигнализирующего механизма данные приспособления моментально указывают на недопустимое изменение температуры, отличное от требуемой величины. Это помогает поддержанию логического протекания всех реакций и технологических процессов, в которых они задействованы.
При всем многообразии приборов, регистрирующих температурные показатели газов, жидкостей и твердых тел следует серьезно подходить к выбору нужного приспособления. Первостепенными факторами, которые надо учесть, являются допустимые границы температурных значений, максимальная удаленность, на которой можно проводить замеры (визирование), точность. И, конечно же, учитывается сфера использования конкретного вида термометра.
Виды приборов для измерения температуры
Устройства для проведения необходимых исследований, в том числе прибор для измерения температуры воздуха, отличаются конструктивно, а также принципом работы, который используется для проведения замеров. Достаточно широкое применение у контактных и дистанционных термометров, иначе называемых пирометрами. Кроме того, классификация приборов для измерения температуры группирует:
- Стеклянные и металлические термометры расширения жидкостные, работающие на свойстве изменения объема тел при разных значениях температуры. Спектр действия их от -190 до +500 °С.
- Манометрические термометры, использующие зависимость между изменяющейся температурой газообразного вещества, помещенного в замкнутый объем, и давлением. Работают при значениях от -160 до +600 °С.
- Электрические термометры сопротивления действуют, полагаясь на способность материалов-проводников менять электросопротивление при нагреве и охлаждении. Эффективны при значениях от -200 до +650 °С.
- Термоэлектрические преобразователи – термопары. Задействуются в диапазоне от 0 до +1800 °С. Эти приборы для измерения температуры используют свойство двух разных металлов и металлосплавов вырабатывать электродвижущую силу при перемене степени нагрева спая.
- Устройство для определения температуры от +100 до +2500 °С – пирометр излучения (фотоэлектрический, оптический, радиационный). Действие обусловлено тем, что фиксируемый показатель влияет на величину излучаемого телом тепла. Относится к бесконтактному типу измерений. Различают стационарные и мобильные, низко- и высокотемпературные пирометры.
Приспособления для определения температуры воздуха
Первый прибор для измерения температуры воздуха – это стеклянный термометр, активным жидким элементом в котором могут быть ртуть, спирт этиловый, толуол и другие вещества.
Высокоточные измерители ртутные бывают палочными и с вложенной стеклянной шкалой. Они востребованы в лабораторных исследованиях в различных областях производства и медицины. Палочный термометр оснащен прозрачной термостойкой градуированной капиллярной трубочкой, а второй вид измерителей характеризуется тем, что деления шкалы расположены позади нее на отдельной пластине, а весь механизм защищен футляром из прочного стекла.
При наличии в приборе электроконтактов его называют термосигнализатором, а чувствительная жидкость внутри резервуара и капилляра показывает настоящую температуру окружающего пространства.
Применение термометров в промышленности и лабораториях
В промышленных отраслях, таких как металлургия, целлюлозно-бумажное производство, земледелие, фармацевтика, животноводство, термометры необходимы для измерения температуры:
- жидкостей;
- растворов;
- газов;
- твердых тел;
- поверхностей;
- сыпучих материалов;
- расплавов и т. д.
Профессиональные термометры особенно востребованы на производствах, где необходим контроль температуры сырья, технологического процесса или оценка свойств готовой продукции. К таким объектам относятся предприятия по изготовлению продуктов питания, химические и металлургические заводы, сельскохозяйственные организации и т. д. Контролировать технологические процессы также необходимо и в условиях лабораторных испытаний. Термометры находят применение в лабораториях контроля качества, эколого-аналитических центрах, технологических отделениях предприятий.
В каждой сфере деятельности востребованы определенные типы термометров. Эти измерители различаются по принципу действия и сфере применения.
Особенности терморегуляторов и сигнализаторов
Кроме вышеперечисленных, существуют и другие приборы для измерения температуры. К примеру, в качестве терморегуляторов и сигнализаторов используют стержневые дилатометры с чувствительными деталями из разнородных металлосплавов, которые удлиняются при нагреве на различную величину.
Тем же принципом характеризуется еще один вид термометра – биметаллический, со вставленной термочувствительной пружиной, спаянной с парой металлических пластинок с различным температурным расширением. В процессе нагрева пружина выгибается к пластине меньшего термокоэффициента, а по величине изгиба находят искомый показатель температуры.