Особенности реверса асинхронного двигателя

Практическое применение

Как я уже говорил, такие двигатели мне встречались в советских станках, которые я восстанавливал.

А именно – циркулярный деревообрабатывающий станок ЦА-2А-1, там используется двухскоростной асинхронный двигатель 4АМ100L8/4У3. Его основные параметры – первая скорость (треугольник) 700 об/мин, ток 5,0А, мощность 1,4 кВт, звёзды – 1410 об/мин, ток 5,0 А, мощность 2,4 кВт.

Меня просили сделать несколько скоростей, для разной древесины и для разной остроты циркулярной пилы. Но увы – без преобразователя частоты здесь не обойтись.

Другой старичок – токарный станок спец.исполнения УТ16П, там стоит двигатель 720/1440 об/мин, 8,9/11 А, 3,2/5,3 кВт:

Шильдик двухскоростного электродвигателя 11 кВт токарного станка

Переключение также переключателем, а схема станка выглядит так:

схема электрическая токарного станка

В этой схеме есть ошибка, как раз по теме статьи. Во первых, переключение скоростей осуществляется не реле Р2, а выключателем В2. А второе (и главное) – схема переключения абсолютно не соответствует реальности. И она меня сбила с толку, я пытался подключить по ней. Пока не сотворил вот такую схему:

Реальная схема включения двухскоростного двигателя токарного станка УТ16П

Дополнительно – внешний вид и расположение элементов электросхемы.

схема токарного станка – внешний вид

схема электрическая токарного станка – расположение элементов

На этом всё.

Друзья! Кому попадаются такие станки и двигателя, пишите, делитесь опытом, задавайте вопросы, буду рад!

Обновление Март 2017

Выкладываю фото и схемы практического включения двухскоростного электродвигателя.

Двигатель работает на гидростанции. На пониженной скорости он дает малое давление, позволяющее управлять механизмами с гидравлическим приводом более точно. На повышенной скорости – давление возрастает примерно в 2 раза, и скорость перемещения соответственно.

Борно двухскоростного двигателя – на клеммы приходят 6 проводов

Схема двухскоростного двигателя

Двухскоростной двигатель гидростанции

Контакторы двухскоростного двигателя. Левый включает в треугольник (низкая скорость), правые – двойная звезда

Мотор-автоматы. Видно, что ток треугольника – до 8А, ток звезд – до 13А

Схема включения силовой части двигателя Даландера.

Схема включения части управления двухскоростного двигателя Даландера.

Коротко о схеме включения двигателя Даландера.

Двигатель включается через реле времени с задержкой отключения.

Реле времени 215А2 включается сразу, а отключается через 5 секунд. Это нужно, чтобы двигатель и контакторы не дергать по пустякам, и кратковременные остановки гидравлических перемещений не отключали двигатель гидростанции.

Далее реле 261К0 включает режим работы треугольник, реле 261К1 – звёзды.

Замена и подбор конденсатора

Если есть конденсатор, аналогичный сгоревшему, то его достаточно просто установить на место старого. Полярность здесь роли не играет.

Многие не знают, какие конденсаторы для запуска электродвигателя использовать нельзя. Конденсаторы с указанием полярности (электролитические) использовать запрещается. Они термически разрушаются при применении в таких схемах. Как правило, для этой цели существуют специальные, которые предназначены для работы с переменным током и не имеют полярности, а также обладают специальным креплением и клеммами для быстрого монтажа.

Если нужного номинала нет, то проще всего подключить несколько конденсаторов. Делать это необходимо параллельно, так как при таком типе соединения емкость будет суммарной. При этом максимальное напряжение, на работу с которым они рассчитаны, не увеличивается. Такая схема подключения полностью соответствует монтажу конденсатора большей емкости.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими

  • Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно)

К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующий стандарт:

ГОСТ 23851-79 Двигатели газотурбинные авиационные. Термины и определения

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», опубликованном по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

Расчет конденсатора

Вполне естественный вопрос о том, конденсатор с какими параметрами нужно использовать для запуска и работы такого аппарата. Все зависит от того, звездой или треугольником соединены обмотки на трехфазной машине.

  • Для звезды существует такой расчет: Cр = 2800•I/U.
  • Треугольник:Cр = 4800•I/U.

Cр– емкость рабочего конденсатора в микрофарадах, I – ток в амперах, U – напряжение сети в вольтах.

Ток можно посчитать таким образом: I = P/(1.73•U•n•cos ф).

Р – это мощность асинхронного аппарата, написанная на его бирке,n – его КПД. Он указан там же, рядом написан и cos ф.

Есть и упрощенный вариант расчета. Он выглядит таким образом: C = 70•Pн, где Pн – это номинальная мощность, кВт (на бирке). Из этой формулы можно сделать вывод, что на каждые 100 Вт должно быть около 7 мкФ емкости.

При завышенной емкости конденсатора обмотки будут сильно греться, при заниженной ротор будет тяжело раскручиваться. Поэтому идеальным вариантом является, когда после всех расчетов делается своеобразная «подгонка»: замеряется ток при помощи клещей и добавляются или убираются дополнительные конденсаторы.

Если нужен пусковой конденсатор, то необходимо подобрать его так, чтобы общая емкость (Ср+Сп) в 2–3 раза превышала рабочую(Ср).

Выбираем автоматический выключатель и пусковое устройство.

Прежде чем заняться подключением двигателя, давайте подберем пускорегулирующую аппаратуру. Современная промышленность выпускает огромное количество автоматов для защиты электродвигателя. Купив такой прибор, можно сразу отбросить вопросы по дальнейшему выбору.

Это интересно — «Способы крепления светильников».

Единственное, что придется сделать — рассчитать аппарат по номинальному току. Вычисляется по формуле: для трехфазной сети —  I  = Р/ Un*1 .73*n*cosф, и для однофазной — I  = Р/ Un*cosф, где Р – мощность электромотора, Un – рабочее напряжение, n – его КПД (как правило, есть в паспорте на изделие, обычно 0,85), а cosф – коэффициент мощности (можно найти в паспорте, для электромоторов, обычно, он равен 0,85). Далее получив результат, умножаем его на температурный коэффициент (это примерно 1,2). Из этого следует, что если, к примеру, мы имеем двигатель 1кВт – то его номинальный ток получится 2,1А  для 380в и 6,3А для 220в. Подбираем автоматические выключатели (АВ) с ближайшими параметрами на увеличение. Хорошо зарекомендовали себя автоматы защиты двигателя с встроенным тепловым реле производства Moeller, ABB, Schneider Electric. Но есть одно «НО», они достаточно дорогие.

Поэтому, исходя из финансовых вопросов, берем обычный модульный АВ с характеристикой «С». Однако, к нему еще необходимо тепловое реле (теплушка). Самым оптимальным вариантом будет выбор ПМЛ-1220. И наконец, давайте сами соберем это устройство, тем более, что в нем нет ничего сложного. Нам понадобится: кроме АВ, модульный или просто контактор с 4 нормально-разомкнутыми контактами. Теплушка и две кнопки без фиксации (по одной с нормально-разомкнутыми нормально-замкнутым контактами). Дальше делаем как представлено ниже.

Описание машины

Однофазными электродвижителями обычно называют асинхронные однофазные электрические машины с малой мощностью. Магнитопровод таких машин имеет двухфазную обмотку, которая делится на стартовую (пусковую) и основную. Необходимость наличия 2 обмоток заключается в следующем: они должны вызывать вращение ротора у электрического движителя (однофазного). На данный момент такие устройства условно делят на 2 категории:

  1. Наличие пусковых обмоток. В этом варианте стартовая обмотка подключена через пусковой конденсатор. Когда пуск совершен, и машина развила номинальную скорость вращения, пусковая обмотка отключается от питания. После чего двигатель продолжает вращаться на подключенной к сети рабочей обмотке (конденсатор заряжается при пуске и отключает пусковую). Необходимый объем конденсатора стандартно указывает производитель машины на табличке со всеми параметрами (стандартно она должна находиться на всех двигателях).
  2. Машины с рабочими конденсаторами. У таких электрических машин вспомогательные обмотки всегда подключены через конденсаторы. В таком случае объем конденсаторов определяется конструкцией двигателя. При этом конденсатор остается включенным и при выходе машины на номинальный режим работы.

Чтобы правильно осуществить подключение электрической машины, необходимо уметь определить (или знать), как выведены пусковые и рабочие обмотки, а также их характеристики.

Стоит отметить: эти обмотки различны по используемым проводникам (их сечению), а также по виткам. Так для рабочих обмоток применяются проводники большего сечения, и они имеют большее количество витков

При этом важно знать, что сопротивление рабочих обмоток у разных машин всегда меньше, чем сопротивление пусковых/вспомогательных. При этом измерить сопротивление обмотки двигателя не составляет особого труда, особенно если применяются специальные мультиметры

На основании описанного стоит привести некоторые примеры.

4Аут80в2 16ухл4 схема подключения

Здравствуйте дорогие читатели. Частенько в любительских самодельных устройствах используются различного рода двигатели. В зависимости от предназначения, двигатели в этих устройствах, согласно конструкторскому замыслу должны вращаться в обе стороны.

То есть схемы их включения должны предусматривать реверсирование. Самое простой реверс имеют двигатели постоянного тока с возбуждением от постоянных магнитов. Поменял концы проводов питания местами и все – движок вращается в другую сторону. Поэтому и схемы реверсирования для этих двигателей простые.

А как быть с другими двигателями? Вот об этом и поговорим.

Электродвигатель ДАУ-10С

Электродвигатель реверсивный имеет две одинаковые обмотки с обозначением выводных концов 1-2-соответственно начало и конец условно называемой обмотки управления, 3-4-обмотки возбуждения

ТЕХНИЧЕСКИЕ ДАННЫЕ

Цена: 2950,00

Номинальная мощность,Вт 10 Номинальная скорость вращения обмин 2400 Номинальное напряжение питания,В220 Колебание напряжения питания,% от плюс 10 от минус 15 Частота переменного тока,Гц 50+-1 Активная потребляемая мощность в стопорном режиме,Вт не более 50 Ток обмотки управления в стопорном режиме, А, не более0,15 Ток холостого хода,А, не более в обмотке возбуждения0,22в обмотке управления 0,05 Маховой момент ротора,гсм 600 Электрическая прочность изоляции,В 1500 Сопротивление изоляции,Мом 100

Случайные товары

Диспергаторы

Водосчетчик ВИС.Т-ВС

ВАКУУМНО-МЕМБРАННЫЙ ПРЕСС, VARIOPRESS BASIC 1000 WEMHOENER (Германия)

Стеллажи набивные глубинные серии ГЛ

Гильотинные ножницы НА3222

www.aesi.ru

Принцип действия и схема запуска

  1. Электрическим током порождается пульсирующее магнитное поле на статоре мотора. Это поле можно рассматривать как 2 разных поля, которые вращаются разнонаправлено и имеют равные амплитуды и частоты.
  2. Когда ротор находится в неподвижном состоянии , эти поля приводят к появлению равных по модулю, но разнонаправленных моментов.
  3. Если у двигателя отсутствуют специальные пусковые механизмы , то при старте результирующий момент будет равен нулю, а значит – двигатель не будет вращаться.
  4. Если же ротор приведен во вращение в какую-то сторону , то соответствующий момент начинает преобладать, а значит, вал двигателя продолжит вращаться в заданном направлении.

Запуск производится магнитным полем , которое вращает подвижную часть мотора. Оно создается 2 обмотками: главной и дополнительной. Последняя имеет меньший размер и является пусковой. Она подключается к основной электрической сети через ёмкость или индуктивность. Подключение осуществляется только на время пуска. В моторах с низкой мощностью, пусковая фаза замкнута накоротко.

Пуск двигателя осуществляют удержанием пусковой кнопки на несколько секунд, вследствие чего происходит разгон ротора.

Во время отпускания пусковой кнопки , электромотор из двухфазного режима переходит в однофазный, и его работа поддерживается соответствующей компонентой переменного магнитного поля.

Пусковая фаза рассчитана на кратковременную работу– как правило, до 3 с. Более длительное время нахождения под нагрузкой, может привести к перегреву, возгоранию изоляции и поломке механизма

Поэтому, важно своевременно отпустить пусковую кнопку.

С целью повышения надежности в корпус однофазных двигателей встраивают центробежный выключатель и тепловое реле.

Функция центробежного выключателя состоит в отключении пусковой фазы, когда ротор набирает номинальную скорость. Это происходит автоматически – без вмешательства пользователя.

Тепловое реле отключает обе фазы обмотки, если они нагреваются выше допустимого.

Читать также: Лучшее крепление для телевизора на стену

Двигатель АВЕ – 071 – 4С

Эти двигатели однофазные, асинхронные применялись в стиральных машинах прошлого века и я думаю, что еще переживут и меня с вами.

Десятки лет они исправно вертели активатор, стирая белье и еще послужат нашим Самоделкиным. Двигатель имеет четыре вывода от двух обмоток.

Одна пусковая, имеющая активное сопротивление 20 ОМ и рабочая с сопротивлением по постоянному току 50 Ом. Схема включения показана на Рис.3.

Применение магнитного контактора

Для организации плавного пуска приходится внедрять в цепь питания специальное коммутирующее устройство – пускатель. Это один из вариантов коннектора, который можно дополнить опциональными элементами, например, тепловым реле. Огромным преимуществом такой схемы является возможность организации не только пуска эл. двигателя, но и его остановки, реверса, а также защиты соединений от повреждения избыточными токами. Кроме того, сердечник или катушка может иметь номинал по напряжению 380 или 220В, что позволяет включать мотор в силовую и бытовую сеть.

Классические электросхемы подключения моторов через пускатель можно разделить на два типа:

  1. Нереверсивная. Соединение агрегата и сети без необходимости/возможности организации его обратного хода. В этом случае есть возможность интеграции, как в силовую, так и бытовую (220В) сеть,

Нереверсивная схема подключения

  1. Реверсивная. Электросхема, которая объединяет два пускателя (блок) с прерывателем цепи. Менять направление вращения роторного узла можно также для силовых и бытовых (220В) сетей.

Реверсивная схема подключения

Как можно судить по иллюстрациям, отличия между «сетевыми» вариантами заключаются в точках подключения выводов контактора:

  • для 380 вольт контакты замыкаются на 2 из 3 фаз,
  • для 220 вольт один из контактов соединяется с крайней фазой, а второй – с нулем.

Тепловое реле

Кроме того, во всех четырех вариантах присутствует элемент, обозначенный, как «Р». Это не что иное, как тепловое реле. Оно подключается в цепь последовательно с катушкой контактора и служит для обеспечения защиты двигателя от превышения токовых нагрузок.

По принципу действия тепловое реле является ключом, то есть при достижении критических для работоспособности агрегата и контактора токовых значений, происходит временный разрыв цепи питания. Некоторые виды теплового реле или «теплушки» используют для цепей постоянного тока или специфических режимах (затянутый пуск, выпадение фазы и т. п).

Постоянное включение магнитного пускателя приводит к механическому износу контактов, чего лишена тиристорная или бесконтактная схема. Разрыв цепи происходит не механическим путем (разведение контактной группы), а электронным – за счет диодных мостов.

Электродвигатель ДАУ-10С

Электродвигатель реверсивный имеет две одинаковые обмотки с обозначением выводных концов 1-2-соответственно начало и конец условно называемой обмотки управления, 3-4-обмотки возбуждения ТЕХНИЧЕСКИЕ ДАННЫЕ

Цена: 2950,00

Номинальная мощность,Вт 10 Номинальная скорость вращения обмин 2400 Номинальное напряжение питания,В220 Колебание напряжения питания,% от плюс 10 от минус 15 Частота переменного тока,Гц 50+-1 Активная потребляемая мощность в стопорном режиме,Вт не более 50 Ток обмотки управления в стопорном режиме, А, не более0,15 Ток холостого хода,А, не более в обмотке возбуждения0,22в обмотке управления 0,05 Маховой момент ротора,гсм 600 Электрическая прочность изоляции,В 1500 Сопротивление изоляции,Мом 100

Случайные товары

Диспергаторы

Водосчетчик ВИС.Т-ВС

ВАКУУМНО-МЕМБРАННЫЙ ПРЕСС, VARIOPRESS BASIC 1000 WEMHOENER (Германия)

Стеллажи набивные глубинные серии ГЛ

Гильотинные ножницы НА3222

www.aesi.ru

Реверс однофазного двигателя

Однофазным называется такой асинхронный двигатель, на статоре которого имеется лишь одна рабочая обмотка, напрямую питаемая от единственной фазы сети. Есть в однофазном двигателе и вспомогательная (пусковая) обмотка, которая используется только в момент старта двигателя, для того чтобы придать ротору начальный импульс, фактически пусковая обмотка включается с целью вывести ротор из положения равновесия, иначе бы он не сдвинулся с места без посторонней помощи, и его пришлось бы сталкивать как-то иначе.

Как и в любом двигателе, в однофазном тоже имеются ротор, который вращается, и статор, который неподвижен, а служит лишь для создания изменяющегося во времени магнитного поля. Рабочая и пусковая обмотки расположены на статоре друг относительно друга под прямым углом, причем рабочая обмотка занимает вдвое больше пазов, чем пусковая.

Можно сказать, что в момент пуска такой двигатель работает как двухфазный, а после — переходит в однофазный рабочий режим. Ротор однофазного асинхронного двигателя по конструкции самый обычный — короткозамкнутый (типа «беличья клетка») или цилиндрический (полый).

Что получилось бы, если б пусковой обмотки на статоре вообще не было, или она была бы, но не использовалась. В этом случае, при включении двигателя в сеть, в рабочей обмотке появилось бы пульсирующее магнитное поле, и ротор бы попал в условия пронизывающего его изменяющегося магнитного потока.

Но если ротор изначально неподвижен, а мы внезапно подали переменный ток лишь в рабочую обмотку, то ротор с места не сдвинется, потому что суммарный вращательный момент (против часовой стрелки и по часовой стрелке) будет равен нулю, несмотря на индуцируемые в роторе ЭДС, и нет причин для вращения, ведь возникающие силы Ампера друг друга точно компенсируют.

Но совсем другое дело, если ротор подтолкнуть, – тогда он продолжит вращение в том же направлении, что и стартовый толчок, ведь теперь не только по закону электромагнитной индукции в роторе наведутся ЭДС и возникнут соответствующие токи, которые по закону Ампера станут от магнитного поля отталкиваться, но и (поскольку ротор уже имеет вращение) результирующий момент по направлению толчка окажется большим, чем момент против направления толчка. В итоге получим продолжение вращения ротора.

Чтобы пусковая обмотка смогла ротор в начальный момент толкнуть, она должна быть не просто смещена в пространстве относительно рабочей обмотки, но еще и ток в ней должен быть сдвинут по фазе относительно тока рабочей обмотки, тогда совместное действие двух этих обмоток статора окажется эквивалентно не просто пульсирующему магнитному полю, но уже вращающемуся магнитному полю. А это – как раз то, что необходимо для разгона ротора в момент пуска однофазного двигателя.

Для смещения по фазе тока в пусковой обмотке, как правило применяют необходимой емкости конденсатор, включенный последовательно с пусковой обмоткой, и создающий сдвиг фаз в 90 градусов. Это стандартное решение для двигателя с расщепленной фазой.

Как только двигатель включается в сеть, оператор нажимает на кнопку выключателя, который подает питание к цепи пусковой обмотки, и как только обороты достигнут необходимого значения соответствующего номиналу при данной частоте сети, кнопку отпускают.

Для получения реверса однофазного двигателя с конденсаторным пуском, достаточно обеспечить условие, когда пусковой толчок будет подаваться в другом направлении, чем подавался изначально. Это достигается путем изменения относительного порядка чередования фаз в рабочей и пусковой обмотках.

Для обеспечения данных условия, необходимо переключить рабочую или пусковую обмотку, то есть поменять «полярность» подключения ее выводов к сети либо к сети и к конденсатору. Это несложно реализовать, поскольку на однофазном двигателе есть клеммник, на который выведены каждый из концов как пусковой, так и рабочей обмоток. Рабочая обмотка имеет меньшее активное сопротивление, чем пусковая, поэтому ее несложно найти при помощи мультиметра. Лучшее решение — разместить выводы пусковой обмотки на двухполюсный переключатель без фиксации.

Как подключить через конденсаторы

Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).

Обозначения имеют следующий вид: С1-С3 — начала обмотки, а С4-С6 — ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».

Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).

Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов — пусковые и рабочие.

Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.

Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.

Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:

  • Рабочие конденсаторы подключаются параллельно;
  • Номинальное напряжение должно быть не меньше 300 Вольт;
  • Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
  • Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты — МБГП, МПГО, КБП и прочие.

Как проверить электродвигатель, обмотку якоря мультиметром, омметром на исправность

Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.

Расчет емкости должен производиться с учетом номинальной мощности ЭД.  Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.

Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.

Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.

Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению автоматов или перегоранию пробок. Кроме того, высок риск оплавления изоляции.

Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:

  • Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
  • Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
  • Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.

С конденсатором дополнительная упрощенная — для схемы звезда.

С конденсатором дополнительная упрощенная — для схемы треугольник.

Эл двигатель дср 10 120 эл схема подключения

СИНХРОННЫЕ И ШАГОВЫЕ ДВИГАТЕЛИ ДЛЯ СИСТЕМ АВТОМАТИКИ

13.1. Синхронные двигатели

13,1.1. Особенности синхронных двигателей

Особенностью синхронных двигателей, определяющей их функциональные возможности и области применения, является постоянство средней частоты вращения при неизменных частоте и амплитуде напряжения питания и колебаниях момента нагрузки.

По конструкции и принципу действия синхронные двигатели делятся на реактивные (СДР), гистерезисные (СДГ), с возбуждением от постоянных магнитов (СДМ) и с электромагнитной редукцией частоты вращения (СДЭР).

Лучшие характеристики имеют трехфазные синхронные двигатели. Однофазные уступают трехфазным по, полезной мощности в тех же габаритных размерах примерно на 30%.

Наиболее высокие энергетические показатели имеют СДМ. В диапазоне мощностей от единиц до 100 Вт они имеют КПД 30-80% и cosq> до 0,85. В том же диапазоне мощностей СДГ имеют КПД 10 — 65% и cos ф = 0,3 -г- 0,5. Наихудшие энергетические показатели имеют СДР. Их КПД 15-40% в диапазоне 10 — 60 Вт и только при мощности до нескольких сотен ватт КПД СДР достигает 60%.

Лучшие удельные показатели имеют СДМ, а СДГ несколько уступают СДМ по этому показателю, но превосходят СДР в диапазоне мощностей 200 — 300 Вт. Свыше 300 Вт удельные показатели СДГ и СДР становятся сравнимыми.

Пусковые свойства СДМ и СДР характеризуются начальным пусковым моментом и моментом входа в синхронизм, численно равным максимальному моменту сопротивления нагрузки, при котором ротор еще втягивается в синхронизм с подсинхрон-ной частоты вращения, составляющей обычно (0,95 -г 0,97) пс. С энергетической точки зрения наиболее выгодным является режим

работы СДМ вблизи точки номинального момента, поскольку это соответствует максимальному значению КПД и допустимым превышениям температуры.

Электродвигатели СДГ и СДЭР допускают работу с перегрузкой в течение длительного времени, поскольку при увеличении нагрузки увеличивается КПД, а мощность потерь изменяется незначительно.

Сравнительные данные пусковых и рабочих свойств синхронных двигателей различных видов приведены в табл. 13.1.

Значительное влияние на характеристики синхронных двигателей оказывает изменение напряжения и частоты питания. Эти изменения в первую очередь оказывают влияние на пусковые свойства и перегрузочную способность.

13.1.2. Двигатели серии ДСП

Двигатели серии ДСП — гистерезисные трехфазные многоскоростные прецизионные. Двигатели имеют пять фиксированных частот вращения, что обеспечивается одновременным изменением напряжения питания и частоты напряжения питания.

Крепление двигателей — фланцевое. Режим работы — продолжительный.

Основные технические данные двигателей серии ДСП приведены в табл. 13.2, габаритные и установочные размеры — в табл. 13.3.

Таблица 13.1. Пусковые и рабочие свойства синхронных двигателей

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Мастер Юрий Меркулов
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Особенности реверса асинхронного двигателя

Практическое применение

Как я уже говорил, такие двигатели мне встречались в советских станках, которые я восстанавливал.

А именно – циркулярный деревообрабатывающий станок ЦА-2А-1, там используется двухскоростной асинхронный двигатель 4АМ100L8/4У3. Его основные параметры – первая скорость (треугольник) 700 об/мин, ток 5,0А, мощность 1,4 кВт, звёзды – 1410 об/мин, ток 5,0 А, мощность 2,4 кВт.

Меня просили сделать несколько скоростей, для разной древесины и для разной остроты циркулярной пилы. Но увы – без преобразователя частоты здесь не обойтись.

Другой старичок – токарный станок спец.исполнения УТ16П, там стоит двигатель 720/1440 об/мин, 8,9/11 А, 3,2/5,3 кВт:

Шильдик двухскоростного электродвигателя 11 кВт токарного станка

Переключение также переключателем, а схема станка выглядит так:

схема электрическая токарного станка

В этой схеме есть ошибка, как раз по теме статьи. Во первых, переключение скоростей осуществляется не реле Р2, а выключателем В2. А второе (и главное) – схема переключения абсолютно не соответствует реальности. И она меня сбила с толку, я пытался подключить по ней. Пока не сотворил вот такую схему:

Реальная схема включения двухскоростного двигателя токарного станка УТ16П

Дополнительно – внешний вид и расположение элементов электросхемы.

схема токарного станка – внешний вид

схема электрическая токарного станка – расположение элементов

На этом всё.

Друзья! Кому попадаются такие станки и двигателя, пишите, делитесь опытом, задавайте вопросы, буду рад!

Обновление Март 2017

Выкладываю фото и схемы практического включения двухскоростного электродвигателя.

Двигатель работает на гидростанции. На пониженной скорости он дает малое давление, позволяющее управлять механизмами с гидравлическим приводом более точно. На повышенной скорости – давление возрастает примерно в 2 раза, и скорость перемещения соответственно.

Борно двухскоростного двигателя – на клеммы приходят 6 проводов

Схема двухскоростного двигателя

Двухскоростной двигатель гидростанции

Контакторы двухскоростного двигателя. Левый включает в треугольник (низкая скорость), правые – двойная звезда

Мотор-автоматы. Видно, что ток треугольника – до 8А, ток звезд – до 13А

Схема включения силовой части двигателя Даландера.

Схема включения части управления двухскоростного двигателя Даландера.

Коротко о схеме включения двигателя Даландера.

Двигатель включается через реле времени с задержкой отключения.

Реле времени 215А2 включается сразу, а отключается через 5 секунд. Это нужно, чтобы двигатель и контакторы не дергать по пустякам, и кратковременные остановки гидравлических перемещений не отключали двигатель гидростанции.

Далее реле 261К0 включает режим работы треугольник, реле 261К1 – звёзды.

Замена и подбор конденсатора

Если есть конденсатор, аналогичный сгоревшему, то его достаточно просто установить на место старого. Полярность здесь роли не играет.

Многие не знают, какие конденсаторы для запуска электродвигателя использовать нельзя. Конденсаторы с указанием полярности (электролитические) использовать запрещается. Они термически разрушаются при применении в таких схемах. Как правило, для этой цели существуют специальные, которые предназначены для работы с переменным током и не имеют полярности, а также обладают специальным креплением и клеммами для быстрого монтажа.

Если нужного номинала нет, то проще всего подключить несколько конденсаторов. Делать это необходимо параллельно, так как при таком типе соединения емкость будет суммарной. При этом максимальное напряжение, на работу с которым они рассчитаны, не увеличивается. Такая схема подключения полностью соответствует монтажу конденсатора большей емкости.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими

  • Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно)

К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующий стандарт:

ГОСТ 23851-79 Двигатели газотурбинные авиационные. Термины и определения

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», опубликованном по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

Расчет конденсатора

Вполне естественный вопрос о том, конденсатор с какими параметрами нужно использовать для запуска и работы такого аппарата. Все зависит от того, звездой или треугольником соединены обмотки на трехфазной машине.

  • Для звезды существует такой расчет: Cр = 2800•I/U.
  • Треугольник:Cр = 4800•I/U.

Cр– емкость рабочего конденсатора в микрофарадах, I – ток в амперах, U – напряжение сети в вольтах.

Ток можно посчитать таким образом: I = P/(1.73•U•n•cos ф).

Р – это мощность асинхронного аппарата, написанная на его бирке,n – его КПД. Он указан там же, рядом написан и cos ф.

Есть и упрощенный вариант расчета. Он выглядит таким образом: C = 70•Pн, где Pн – это номинальная мощность, кВт (на бирке). Из этой формулы можно сделать вывод, что на каждые 100 Вт должно быть около 7 мкФ емкости.

При завышенной емкости конденсатора обмотки будут сильно греться, при заниженной ротор будет тяжело раскручиваться. Поэтому идеальным вариантом является, когда после всех расчетов делается своеобразная «подгонка»: замеряется ток при помощи клещей и добавляются или убираются дополнительные конденсаторы.

Если нужен пусковой конденсатор, то необходимо подобрать его так, чтобы общая емкость (Ср+Сп) в 2–3 раза превышала рабочую(Ср).

Выбираем автоматический выключатель и пусковое устройство.

Прежде чем заняться подключением двигателя, давайте подберем пускорегулирующую аппаратуру. Современная промышленность выпускает огромное количество автоматов для защиты электродвигателя. Купив такой прибор, можно сразу отбросить вопросы по дальнейшему выбору.

Это интересно — «Способы крепления светильников».

Единственное, что придется сделать — рассчитать аппарат по номинальному току. Вычисляется по формуле: для трехфазной сети —  I  = Р/ Un*1 .73*n*cosф, и для однофазной — I  = Р/ Un*cosф, где Р – мощность электромотора, Un – рабочее напряжение, n – его КПД (как правило, есть в паспорте на изделие, обычно 0,85), а cosф – коэффициент мощности (можно найти в паспорте, для электромоторов, обычно, он равен 0,85). Далее получив результат, умножаем его на температурный коэффициент (это примерно 1,2). Из этого следует, что если, к примеру, мы имеем двигатель 1кВт – то его номинальный ток получится 2,1А  для 380в и 6,3А для 220в. Подбираем автоматические выключатели (АВ) с ближайшими параметрами на увеличение. Хорошо зарекомендовали себя автоматы защиты двигателя с встроенным тепловым реле производства Moeller, ABB, Schneider Electric. Но есть одно «НО», они достаточно дорогие.

Поэтому, исходя из финансовых вопросов, берем обычный модульный АВ с характеристикой «С». Однако, к нему еще необходимо тепловое реле (теплушка). Самым оптимальным вариантом будет выбор ПМЛ-1220. И наконец, давайте сами соберем это устройство, тем более, что в нем нет ничего сложного. Нам понадобится: кроме АВ, модульный или просто контактор с 4 нормально-разомкнутыми контактами. Теплушка и две кнопки без фиксации (по одной с нормально-разомкнутыми нормально-замкнутым контактами). Дальше делаем как представлено ниже.

Описание машины

Однофазными электродвижителями обычно называют асинхронные однофазные электрические машины с малой мощностью. Магнитопровод таких машин имеет двухфазную обмотку, которая делится на стартовую (пусковую) и основную. Необходимость наличия 2 обмоток заключается в следующем: они должны вызывать вращение ротора у электрического движителя (однофазного). На данный момент такие устройства условно делят на 2 категории:

  1. Наличие пусковых обмоток. В этом варианте стартовая обмотка подключена через пусковой конденсатор. Когда пуск совершен, и машина развила номинальную скорость вращения, пусковая обмотка отключается от питания. После чего двигатель продолжает вращаться на подключенной к сети рабочей обмотке (конденсатор заряжается при пуске и отключает пусковую). Необходимый объем конденсатора стандартно указывает производитель машины на табличке со всеми параметрами (стандартно она должна находиться на всех двигателях).
  2. Машины с рабочими конденсаторами. У таких электрических машин вспомогательные обмотки всегда подключены через конденсаторы. В таком случае объем конденсаторов определяется конструкцией двигателя. При этом конденсатор остается включенным и при выходе машины на номинальный режим работы.

Чтобы правильно осуществить подключение электрической машины, необходимо уметь определить (или знать), как выведены пусковые и рабочие обмотки, а также их характеристики.

Стоит отметить: эти обмотки различны по используемым проводникам (их сечению), а также по виткам. Так для рабочих обмоток применяются проводники большего сечения, и они имеют большее количество витков

При этом важно знать, что сопротивление рабочих обмоток у разных машин всегда меньше, чем сопротивление пусковых/вспомогательных. При этом измерить сопротивление обмотки двигателя не составляет особого труда, особенно если применяются специальные мультиметры

На основании описанного стоит привести некоторые примеры.

4Аут80в2 16ухл4 схема подключения

Здравствуйте дорогие читатели. Частенько в любительских самодельных устройствах используются различного рода двигатели. В зависимости от предназначения, двигатели в этих устройствах, согласно конструкторскому замыслу должны вращаться в обе стороны.

То есть схемы их включения должны предусматривать реверсирование. Самое простой реверс имеют двигатели постоянного тока с возбуждением от постоянных магнитов. Поменял концы проводов питания местами и все – движок вращается в другую сторону. Поэтому и схемы реверсирования для этих двигателей простые.

А как быть с другими двигателями? Вот об этом и поговорим.

Электродвигатель ДАУ-10С

Электродвигатель реверсивный имеет две одинаковые обмотки с обозначением выводных концов 1-2-соответственно начало и конец условно называемой обмотки управления, 3-4-обмотки возбуждения

ТЕХНИЧЕСКИЕ ДАННЫЕ

Цена: 2950,00

Номинальная мощность,Вт 10 Номинальная скорость вращения обмин 2400 Номинальное напряжение питания,В220 Колебание напряжения питания,% от плюс 10 от минус 15 Частота переменного тока,Гц 50+-1 Активная потребляемая мощность в стопорном режиме,Вт не более 50 Ток обмотки управления в стопорном режиме, А, не более0,15 Ток холостого хода,А, не более в обмотке возбуждения0,22в обмотке управления 0,05 Маховой момент ротора,гсм 600 Электрическая прочность изоляции,В 1500 Сопротивление изоляции,Мом 100

Случайные товары

Диспергаторы

Водосчетчик ВИС.Т-ВС

ВАКУУМНО-МЕМБРАННЫЙ ПРЕСС, VARIOPRESS BASIC 1000 WEMHOENER (Германия)

Стеллажи набивные глубинные серии ГЛ

Гильотинные ножницы НА3222

www.aesi.ru

Принцип действия и схема запуска

  1. Электрическим током порождается пульсирующее магнитное поле на статоре мотора. Это поле можно рассматривать как 2 разных поля, которые вращаются разнонаправлено и имеют равные амплитуды и частоты.
  2. Когда ротор находится в неподвижном состоянии , эти поля приводят к появлению равных по модулю, но разнонаправленных моментов.
  3. Если у двигателя отсутствуют специальные пусковые механизмы , то при старте результирующий момент будет равен нулю, а значит – двигатель не будет вращаться.
  4. Если же ротор приведен во вращение в какую-то сторону , то соответствующий момент начинает преобладать, а значит, вал двигателя продолжит вращаться в заданном направлении.

Запуск производится магнитным полем , которое вращает подвижную часть мотора. Оно создается 2 обмотками: главной и дополнительной. Последняя имеет меньший размер и является пусковой. Она подключается к основной электрической сети через ёмкость или индуктивность. Подключение осуществляется только на время пуска. В моторах с низкой мощностью, пусковая фаза замкнута накоротко.

Пуск двигателя осуществляют удержанием пусковой кнопки на несколько секунд, вследствие чего происходит разгон ротора.

Во время отпускания пусковой кнопки , электромотор из двухфазного режима переходит в однофазный, и его работа поддерживается соответствующей компонентой переменного магнитного поля.

Пусковая фаза рассчитана на кратковременную работу– как правило, до 3 с. Более длительное время нахождения под нагрузкой, может привести к перегреву, возгоранию изоляции и поломке механизма

Поэтому, важно своевременно отпустить пусковую кнопку.

С целью повышения надежности в корпус однофазных двигателей встраивают центробежный выключатель и тепловое реле.

Функция центробежного выключателя состоит в отключении пусковой фазы, когда ротор набирает номинальную скорость. Это происходит автоматически – без вмешательства пользователя.

Тепловое реле отключает обе фазы обмотки, если они нагреваются выше допустимого.

Читать также: Лучшее крепление для телевизора на стену

Двигатель АВЕ – 071 – 4С

Эти двигатели однофазные, асинхронные применялись в стиральных машинах прошлого века и я думаю, что еще переживут и меня с вами.

Десятки лет они исправно вертели активатор, стирая белье и еще послужат нашим Самоделкиным. Двигатель имеет четыре вывода от двух обмоток.

Одна пусковая, имеющая активное сопротивление 20 ОМ и рабочая с сопротивлением по постоянному току 50 Ом. Схема включения показана на Рис.3.

Применение магнитного контактора

Для организации плавного пуска приходится внедрять в цепь питания специальное коммутирующее устройство – пускатель. Это один из вариантов коннектора, который можно дополнить опциональными элементами, например, тепловым реле. Огромным преимуществом такой схемы является возможность организации не только пуска эл. двигателя, но и его остановки, реверса, а также защиты соединений от повреждения избыточными токами. Кроме того, сердечник или катушка может иметь номинал по напряжению 380 или 220В, что позволяет включать мотор в силовую и бытовую сеть.

Классические электросхемы подключения моторов через пускатель можно разделить на два типа:

  1. Нереверсивная. Соединение агрегата и сети без необходимости/возможности организации его обратного хода. В этом случае есть возможность интеграции, как в силовую, так и бытовую (220В) сеть,

Нереверсивная схема подключения

  1. Реверсивная. Электросхема, которая объединяет два пускателя (блок) с прерывателем цепи. Менять направление вращения роторного узла можно также для силовых и бытовых (220В) сетей.

Реверсивная схема подключения

Как можно судить по иллюстрациям, отличия между «сетевыми» вариантами заключаются в точках подключения выводов контактора:

  • для 380 вольт контакты замыкаются на 2 из 3 фаз,
  • для 220 вольт один из контактов соединяется с крайней фазой, а второй – с нулем.

Тепловое реле

Кроме того, во всех четырех вариантах присутствует элемент, обозначенный, как «Р». Это не что иное, как тепловое реле. Оно подключается в цепь последовательно с катушкой контактора и служит для обеспечения защиты двигателя от превышения токовых нагрузок.

По принципу действия тепловое реле является ключом, то есть при достижении критических для работоспособности агрегата и контактора токовых значений, происходит временный разрыв цепи питания. Некоторые виды теплового реле или «теплушки» используют для цепей постоянного тока или специфических режимах (затянутый пуск, выпадение фазы и т. п).

Постоянное включение магнитного пускателя приводит к механическому износу контактов, чего лишена тиристорная или бесконтактная схема. Разрыв цепи происходит не механическим путем (разведение контактной группы), а электронным – за счет диодных мостов.

Электродвигатель ДАУ-10С

Электродвигатель реверсивный имеет две одинаковые обмотки с обозначением выводных концов 1-2-соответственно начало и конец условно называемой обмотки управления, 3-4-обмотки возбуждения ТЕХНИЧЕСКИЕ ДАННЫЕ

Цена: 2950,00

Номинальная мощность,Вт 10 Номинальная скорость вращения обмин 2400 Номинальное напряжение питания,В220 Колебание напряжения питания,% от плюс 10 от минус 15 Частота переменного тока,Гц 50+-1 Активная потребляемая мощность в стопорном режиме,Вт не более 50 Ток обмотки управления в стопорном режиме, А, не более0,15 Ток холостого хода,А, не более в обмотке возбуждения0,22в обмотке управления 0,05 Маховой момент ротора,гсм 600 Электрическая прочность изоляции,В 1500 Сопротивление изоляции,Мом 100

Случайные товары

Диспергаторы

Водосчетчик ВИС.Т-ВС

ВАКУУМНО-МЕМБРАННЫЙ ПРЕСС, VARIOPRESS BASIC 1000 WEMHOENER (Германия)

Стеллажи набивные глубинные серии ГЛ

Гильотинные ножницы НА3222

www.aesi.ru

Реверс однофазного двигателя

Однофазным называется такой асинхронный двигатель, на статоре которого имеется лишь одна рабочая обмотка, напрямую питаемая от единственной фазы сети. Есть в однофазном двигателе и вспомогательная (пусковая) обмотка, которая используется только в момент старта двигателя, для того чтобы придать ротору начальный импульс, фактически пусковая обмотка включается с целью вывести ротор из положения равновесия, иначе бы он не сдвинулся с места без посторонней помощи, и его пришлось бы сталкивать как-то иначе.

Как и в любом двигателе, в однофазном тоже имеются ротор, который вращается, и статор, который неподвижен, а служит лишь для создания изменяющегося во времени магнитного поля. Рабочая и пусковая обмотки расположены на статоре друг относительно друга под прямым углом, причем рабочая обмотка занимает вдвое больше пазов, чем пусковая.

Можно сказать, что в момент пуска такой двигатель работает как двухфазный, а после — переходит в однофазный рабочий режим. Ротор однофазного асинхронного двигателя по конструкции самый обычный — короткозамкнутый (типа «беличья клетка») или цилиндрический (полый).

Что получилось бы, если б пусковой обмотки на статоре вообще не было, или она была бы, но не использовалась. В этом случае, при включении двигателя в сеть, в рабочей обмотке появилось бы пульсирующее магнитное поле, и ротор бы попал в условия пронизывающего его изменяющегося магнитного потока.

Но если ротор изначально неподвижен, а мы внезапно подали переменный ток лишь в рабочую обмотку, то ротор с места не сдвинется, потому что суммарный вращательный момент (против часовой стрелки и по часовой стрелке) будет равен нулю, несмотря на индуцируемые в роторе ЭДС, и нет причин для вращения, ведь возникающие силы Ампера друг друга точно компенсируют.

Но совсем другое дело, если ротор подтолкнуть, – тогда он продолжит вращение в том же направлении, что и стартовый толчок, ведь теперь не только по закону электромагнитной индукции в роторе наведутся ЭДС и возникнут соответствующие токи, которые по закону Ампера станут от магнитного поля отталкиваться, но и (поскольку ротор уже имеет вращение) результирующий момент по направлению толчка окажется большим, чем момент против направления толчка. В итоге получим продолжение вращения ротора.

Чтобы пусковая обмотка смогла ротор в начальный момент толкнуть, она должна быть не просто смещена в пространстве относительно рабочей обмотки, но еще и ток в ней должен быть сдвинут по фазе относительно тока рабочей обмотки, тогда совместное действие двух этих обмоток статора окажется эквивалентно не просто пульсирующему магнитному полю, но уже вращающемуся магнитному полю. А это – как раз то, что необходимо для разгона ротора в момент пуска однофазного двигателя.

Для смещения по фазе тока в пусковой обмотке, как правило применяют необходимой емкости конденсатор, включенный последовательно с пусковой обмоткой, и создающий сдвиг фаз в 90 градусов. Это стандартное решение для двигателя с расщепленной фазой.

Как только двигатель включается в сеть, оператор нажимает на кнопку выключателя, который подает питание к цепи пусковой обмотки, и как только обороты достигнут необходимого значения соответствующего номиналу при данной частоте сети, кнопку отпускают.

Для получения реверса однофазного двигателя с конденсаторным пуском, достаточно обеспечить условие, когда пусковой толчок будет подаваться в другом направлении, чем подавался изначально. Это достигается путем изменения относительного порядка чередования фаз в рабочей и пусковой обмотках.

Для обеспечения данных условия, необходимо переключить рабочую или пусковую обмотку, то есть поменять «полярность» подключения ее выводов к сети либо к сети и к конденсатору. Это несложно реализовать, поскольку на однофазном двигателе есть клеммник, на который выведены каждый из концов как пусковой, так и рабочей обмоток. Рабочая обмотка имеет меньшее активное сопротивление, чем пусковая, поэтому ее несложно найти при помощи мультиметра. Лучшее решение — разместить выводы пусковой обмотки на двухполюсный переключатель без фиксации.

Как подключить через конденсаторы

Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).

Обозначения имеют следующий вид: С1-С3 — начала обмотки, а С4-С6 — ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».

Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).

Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов — пусковые и рабочие.

Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.

Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.

Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:

  • Рабочие конденсаторы подключаются параллельно;
  • Номинальное напряжение должно быть не меньше 300 Вольт;
  • Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
  • Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты — МБГП, МПГО, КБП и прочие.

Как проверить электродвигатель, обмотку якоря мультиметром, омметром на исправность

Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.

Расчет емкости должен производиться с учетом номинальной мощности ЭД.  Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.

Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.

Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.

Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению автоматов или перегоранию пробок. Кроме того, высок риск оплавления изоляции.

Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:

  • Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
  • Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
  • Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.

С конденсатором дополнительная упрощенная — для схемы звезда.

С конденсатором дополнительная упрощенная — для схемы треугольник.

Эл двигатель дср 10 120 эл схема подключения

СИНХРОННЫЕ И ШАГОВЫЕ ДВИГАТЕЛИ ДЛЯ СИСТЕМ АВТОМАТИКИ

13.1. Синхронные двигатели

13,1.1. Особенности синхронных двигателей

Особенностью синхронных двигателей, определяющей их функциональные возможности и области применения, является постоянство средней частоты вращения при неизменных частоте и амплитуде напряжения питания и колебаниях момента нагрузки.

По конструкции и принципу действия синхронные двигатели делятся на реактивные (СДР), гистерезисные (СДГ), с возбуждением от постоянных магнитов (СДМ) и с электромагнитной редукцией частоты вращения (СДЭР).

Лучшие характеристики имеют трехфазные синхронные двигатели. Однофазные уступают трехфазным по, полезной мощности в тех же габаритных размерах примерно на 30%.

Наиболее высокие энергетические показатели имеют СДМ. В диапазоне мощностей от единиц до 100 Вт они имеют КПД 30-80% и cosq> до 0,85. В том же диапазоне мощностей СДГ имеют КПД 10 — 65% и cos ф = 0,3 -г- 0,5. Наихудшие энергетические показатели имеют СДР. Их КПД 15-40% в диапазоне 10 — 60 Вт и только при мощности до нескольких сотен ватт КПД СДР достигает 60%.

Лучшие удельные показатели имеют СДМ, а СДГ несколько уступают СДМ по этому показателю, но превосходят СДР в диапазоне мощностей 200 — 300 Вт. Свыше 300 Вт удельные показатели СДГ и СДР становятся сравнимыми.

Пусковые свойства СДМ и СДР характеризуются начальным пусковым моментом и моментом входа в синхронизм, численно равным максимальному моменту сопротивления нагрузки, при котором ротор еще втягивается в синхронизм с подсинхрон-ной частоты вращения, составляющей обычно (0,95 -г 0,97) пс. С энергетической точки зрения наиболее выгодным является режим

работы СДМ вблизи точки номинального момента, поскольку это соответствует максимальному значению КПД и допустимым превышениям температуры.

Электродвигатели СДГ и СДЭР допускают работу с перегрузкой в течение длительного времени, поскольку при увеличении нагрузки увеличивается КПД, а мощность потерь изменяется незначительно.

Сравнительные данные пусковых и рабочих свойств синхронных двигателей различных видов приведены в табл. 13.1.

Значительное влияние на характеристики синхронных двигателей оказывает изменение напряжения и частоты питания. Эти изменения в первую очередь оказывают влияние на пусковые свойства и перегрузочную способность.

13.1.2. Двигатели серии ДСП

Двигатели серии ДСП — гистерезисные трехфазные многоскоростные прецизионные. Двигатели имеют пять фиксированных частот вращения, что обеспечивается одновременным изменением напряжения питания и частоты напряжения питания.

Крепление двигателей — фланцевое. Режим работы — продолжительный.

Основные технические данные двигателей серии ДСП приведены в табл. 13.2, габаритные и установочные размеры — в табл. 13.3.

Таблица 13.1. Пусковые и рабочие свойства синхронных двигателей

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Мастер Юрий Меркулов
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: